Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 6
263
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the impact of matrix effects in LC/MS measurement on the accurate quantification of neonicotinoid pesticides in food by isotope-dilution mass spectrometry

, , &

References

  • T. C, M. Mammalian Toxicology of Insecticides; Royal Society of Chemistry: London, 2012. DOI: 10.1039/9781849733007.
  • Kimura-Kuroda, J.; Komuta, Y.; Kuroda, Y.; Hayashi, M.; Kawano, H. Nicotine-like Effects of the Neonicotinoid Insecticides Acetamiprid and Imidacloprid on Cerebellar Neurons From Neonatal Rats. PLoS ONE 2012, 7, 1–11. DOI: 10.1371/journal.pone.0032432.
  • European Commission. EU-Pesticides Database. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=homepage&language=EN (accessed Feb. 2019).
  • The Japan Food Chemical Research Foundation. Search Engine for MRLs. Available at http://db.ffcr.or.jp/front/ (accessed Apr. 2019).
  • Xiao, Z.; Yang, Y.; Li, Y.; Fan, X.; Ding, S. Determination of Neonicotinoid Insecticides Residues in Eels Using Subcritical Water Extraction and Ultra-performance Liquid Chromatography-tandem Mass Spectrometry. Anal. Chim. Acta 2013, 777, 32–40. DOI: 10.1016/j.aca.2013.03.026.
  • Rodríguez-Cabo, T.; Casado, J.; Rodríguez, I.; Ramil, M.; Cela, R. Selective Extraction And Determination of Neonicotinoid Insecticides in Wine by Liquid Chromatography–tandem Mass spectrometry. J. Chromatogr. A 2016, 1460, 9–15. DOI: 10.1016/j.chroma.2016.07.004.
  • Liu, S.; Zheng, Z.; Wei, F.; Ren, Y.; Gui, W.; Wu, H.; Zhu, G. Simultaneous Determination of Seven Neonicotinoid Pesticide Residues in Food by Ultraperformance Liquid Chromatography Tandem mass Spectrometry. J. Agric. Food Chem. 2010, 58, 3271–3278. DOI: 10.1021/jf904045j.
  • Giroud, B.; Vauchez, A.; Vulliet, E.; Wiest, L.; Buleté, A. Trace Level Determination of Pyrethroid and Neonicotinoid Insecticides in Beebread Using Acetonitrile-based Extraction Followed by Analysis With Ultra-high-performance Liquid Chromatography–tandem Mass Spectrometry. J. Chromatogr. A 2013, 1316, 53–61. DOI: 10.1016/j.chroma.2013.09.088.
  • Iwafune, T.; Ogino, T.; Watanabe, E. Water-based Extraction and Liquid Chromatography–tandem Mass Spectrometry Analysis of Neonicotinoid Insecticides and Their Metabolites in Green Pepper/tomato Samples. J. Agric. Food Chem. 2014, 62, 2790–2796. DOI: 10.1021/jf405311y.
  • Konatu, F. R. B.; Breitkreitz, M. C.; Jardim, I. C. S. F. Revisiting Quick, Easy, Cheap, Effective, Rugged, and Safe Parameters for Sample Preparation in Pesticide Residue Analysis of Lettuce by Liquid Chromatography–tandem Mass Spectrometry. J. Chromatogr. A 2017, 1482, 11–22. DOI: 10.1016/j.chroma.2016.12.061.
  • Richter, W. Primary Methods of Measurement in Chemical Analysis. Accred. Qual. Assur. 1997, 2, 354–359. DOI: 10.1007/s007690050165.
  • Grimalt, S.; Harbeck, S.; Shegunova, P.; Seghers, J.; Sejerøe-Olsen, B.; Emteborg, H.; Dabrio, M. Development of a New Cucumber Reference Material for Pesticide Residue Analysis: Feasibility Study for Material Processing, Homogeneity and Stability Assessment. Anal. Bioanal. Chem. 2015, 407, 3083–3091. DOI: 10.1007/s00216-015-8476-x.
  • Kim, B.; Ahn, S.; Mitani, Y. Interlaboratory Comparison for the Determination of Pesticide Residues in Chinese Cabbage. Accred. Qual. Assur. 2011, 16, 499–505. DOI: 10.1007/s00769-011-0795-9.
  • Yarita, T.; Otake, T.; Aoyagi, Y.; Kuroiwa, T.; Numata, M.; Takatsu, A. Proficiency Testing for Determination of Pesticide Residues in Soybean: Comparison of Assigned Values From Participants’ Results and Isotope-dilution Mass Spectrometric Determination. Talanta 2015, 132, 269–277. DOI: 10.1016/j.talanta.2014.09.001.
  • Otake, T.; Yarita, T.; Aoyagi, Y.; Numata, M.; Takatsu, A. Evaluation of the Performance of 57 Japanese Participating Laboratories by Two Types of z-scores in Proficiency Test for the Quantification of Pesticide Residues in Brown Rice. Anal. Bioanal. Chem. 2014, 406, 7337–7344. DOI: 10.1007/s00216-014-8160-6.
  • Wang, S.; Cyronak, M.; Yang, E. Does a Stable Isotopically Labeled Internal Stable Always Correct Analyte Response? A Matrix Effect Study on a LC/MS/MS Method for the Determination of Carvedilol Enantiomers in Human Plasma. J. Pharm. Biomed. Anal. 2007, 43, 701–707. DOI: 10.1016/j.jpba.2006.08.010.
  • Chen, D.; Han, W.; Su, X.; Li, L.; Li, L. Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry. Anal. Chem. 2017, 89, 9424–9431. DOI: 10.1021/acs.analchem.7b02240.
  • Bienvenu, J.-F.; Provencher, G.; Bélanger, P.; Bérubé, R.; Dumas, P.; Gagné, S.; Gaudreau, É.; Fleury, N. Standardized Procedure for the Simultaneous Determination of the Matrix Effect, Recovery, Process Efficiency, and Internal Standard Association. Anal. Chem. 2017, 89, 7560–7568. DOI: 10.1021/acs.analchem.7b01383.
  • Berg, T.; Strand, D. H. 13C Labelled Internal Standards—A Solution to Minimize Ion Suppression Effects in Liquid Chromatography-tandem Mass Spectrometry Analysis of Drugs in Biological Samples? J. Chromatogr. A 2011, 1218, 9366–9374. DOI: 10.1016/j.chroma.2011.10.081.
  • Jessome, L. L.; Volmer, D. A. Ion Suppression: A Major Concern in Mass Spectrometry, LC GC N. Am 2006, 24, 498–510.
  • Yarita, T.; Aoyagi, Y.; Otake, T. Evaluation of the Impact of Matrix Effect on Quantification of Pesticides in Foods By Gas Chromatography–Mass Spectrometry Using Isotope-Labeled Internal Standards. J. Chromatogr. A 2015, 1396, 109–116. DOI: 10.1016/j.chroma.2015.03.075.
  • Lee, S.; Kim, B.; Kim, J. Development of Isotope Dilution-Liquid Chromatography Tandem Mass Spectrometry for the Accurate Determination of Fluoroquinolones in Animal Meat Products: Optimization of Chromatographic separation for Eliminating Matrix Effects on Isotope Ratio Measurements. J. Chromatogr. A 2013, 1277, 35–41. DOI: 10.1016/j.chroma.2012.12.047.
  • Li, X. Q.; Yang, Z.; Zhang, Q. H.; Li, H. M. Evaluation of Matrix Effect in Isotope Dilution Mass Spectrometry Based on Quantitative Analysis of Chloramphenicol Residues in Milk Powder. Anal. Chim. Acta 2014, 807, 75–83. DOI: 10.1016/j.aca.2013.11.017.
  • Ministry of Health, Labour and Welfare of Japan. Analytical Methods for Residual Compositional Substances of Agricultural Chemicals, Feed Additives, and Veterinary Drugs in Food. http://www.mhlw.go.jp/english/topics/foodsafety/positivelist060228/dl/060526-1a.pdf. (accessed Jun. 2018).
  • Ministry of Health, Labour and Welfare of Japan. Results of pesticide residues monitoring in foods. https://www.mhlw.go.jp/file/06-Seisakujouhou-11130500-Shokuhinanzenbu/0000202113.pdf (accessed Apr. 2019, in Japanese).
  • Ministry of Health, Labour and Welfare, Japan, Pesticide Residues in Foods, Japan. Guidelines for the validation of analytical methods for testing agricultural chemicals in food. https://www.mhlw.go.jp/english/topics/foodsafety/positivelist060228/dl/181130_21.pdf (accessed Jun. 2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.