Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 9
214
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of electrolyte composition and pH on glyphosate sorption by cow-dung amended soil

, , , &

References

  • Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3–15. DOI: 10.1186/s12302-016-0070-0.
  • Stalikas, C.; Konidari, C. analytical methods to determine phosphonic and amino acid group containing pesticides. J. Chrom. A 2001, 907, 1–19. DOI: 10.1016/S0021-9673(00)01009-8.
  • Henderson, A. M.; Gervais, J. A.; Luukinen, B.; Buhl, K.; Stone, D. Glyphosate General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services: OR, USA, 2010. http://npic.orst.edu/factsheets/glyphosatehogen.html.
  • Ololade, I. A.; Oladoja, N. A.; Oloye, F. F.; Alomaja, F.; Akerele, D. D.; Iwaye, J.; Aikpokpodion, P. Sorption of glyphosate on soil components: the roles of metal oxides and organic materials. Soil Sed. Contam. 2014, 23, 571–585. DOI: 10.1080/15320383.2014.846900.
  • Daouk, S.; De Alencastro, L. F.; Pfeifer, H. The herbicide glyphosate and its metabolite AMPA in the Lavaux Vineyard Area, Western Switzerland: proof of widespread export to surface waters. Part II: The role of infiltration and surface runoff. J. Environ. Sci. Health B 2013, 48, 725–736. DOI: 10.1080/03601234.2013.780548.
  • Chekan, J. R.; Cogan, D. P.; Nair, S. K. Molecular basis for resistance against phosphonate antibiotics and herbicides. Med. Chem. Commun. 2016, 7, 28–36. DOI: 10.1039/C5MD00351B.
  • de Jonge, H.; de Jonge, L. W. Influence of pH and solution composition of glyphosate and prochloraz to a sandy loam soil. Chemosphere 1999, 39, 753–763. DOI: 10.1016/S0045-6535(99)00011-9.
  • Gimsing, A. L.; Borggaard, O. K.; Bang, M. Influence of soil composition on adsorption of glyphosate and phosphate by contrasting danish surface soils. Eur. J. Soil Sci. 2004, 55, 183–191. DOI: 10.1046/j.1365-2389.2003.00585.x.
  • Okada, E.; Costa, J. L.; Bedmar, F. Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma 2016, 263, 78–85. DOI: 10.1016/j.geoderma.2015.09.009.
  • Dollinger, J.; Dagès, C.; Voltz, M. Glyphosate sorption to soils and sediments predicted by pedotransfer functions. Environ. Chem. Lett. 2015, 13, 293–307. DOI: 10.1007/s10311-015-0515-5.
  • Gerritse, R. G.; Beltran, J.; Hernandez, F. Adsorption of atrazine, simazine, and glyphosate in soils of the Gnangara Mound, Western Australia. Soil Res. 1996, 34, 599–607. DOI: 10.1071/SR9960599.
  • Borggaard, O. K.; Gimsing, A. L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 2008, 64, 441–456. DOI: 10.1002/ps.1512.
  • Morillo, E.; Undabeytia, T.; Maqueda, C.; Ramos, A. Glyphosate adsorption on solis of different characteristics. influence of copper addition. Chemosphere 2000, 40, 103–107. DOI: 10.1016/S0045-6535(99)00255-6.
  • Gunarathna, G.; Gunawardana, B.; Jayaweera, M.; Manatunge, J.; Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J. Environ. Sci. Health B 2018, 53, 729–737. DOI: 10.1080/03601234.2018.1480157.
  • de Jonge, H.; de Jonge, L. W.; Jacobsen, O. H.; Yamaguchi, T.; Moldrup, P. Glyphosate sorption in soils of different pH and hosphorus content. Soil. Sci. 2001, 166, 230–238. DOI: 10.1097/00010694-200104000-00002.
  • Gimsing, A. L.; Borggaard, O. K. Phosphate and glyphosate adsorption by hematite and ferrihydrite and comparison with other variable-charge minerals. Clays Clay Miner. 2007, 55, 108–114. DOI: 10.1346/CCMN.2007.0550109.
  • Kanissery, R. G.; Welsh, A.; Sims, G. K. Effect of soil aeration and phosphate addition on the microbial bioavailability of carbon-14-glyphosate. J. Environ. Qual. 2015, 44, 137. DOI: 10.2134/jeq2014.08.0331.
  • Sasal, M. C.; Demonte, L.; Cislaghi, A.; Gabioud, E. A.; Oszust, J. D.; Wilson, M. G.; Michlig, N.; Beldoménico, H. R.; Repetti, M. R. Glyphosate loss by runoff and its relationship with phosphorus fertilization. J. Agric. Food Chem. 2015, 63, 4444–4448. DOI: 10.1021/jf505533r.
  • Prata, F.; Cardinali, V. C. B.; Lavorenti, A.; Tornisielo, V. L.; Regitano, J. B. Glyphosate sorption and desorption in soils with distinct phosphorus levels. Sci. Agric. (Piracicaba, Braz.). 2003, 60, 175–180. DOI: 10.1590/S0103-90162003000100026.
  • Parks, G. A.; de Bruyn, P. L. The zero point of charge of oxides. J. Phys. Chem. 1962, 66, 967–973. DOI: 10.1021/j100812a002.
  • Delle Sitea, A. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. a review. J. Phys. Chem. Ref. 2001, 30, 187.
  • Ololade, I. A.; Oladoja, N. A.; Alomaja, F.; Ololade, O. O.; Olaseni, E. O.; Oloye, F. F.; Adelagun, R. O. A. Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions. Environ. Monit. Assess. 2015, 187, 4170–4185.
  • Stevenson, F. J. Humus Chemistry: Genesis, Composition, Reactions. 2nd ed. John Wiley & Sons: New York, NY, 1994.
  • Langmuir, D. Aqueous Environmental Geochemistry. Pearson Education: Upper Saddle River, NJ, 1997.
  • Boxall, A. B. A.; Blackwell, P.; Cavallo, R.; Kay, P.; Tolls, J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol. Lett. 2002, 131, 19–28.
  • Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 2008, 73, 1344–1350. DOI: 10.1016/j.chemosphere.2008.06.066.
  • Farenhorst, A.; Muc, D.; Monreal, C.; Florinski, I. Sorption of herbicides in relation to soil variability and landscape position. J. Environ. Sci. Health B. 2001, 36, 379–387. DOI: 10.1081/PFC-100104182.
  • Dorado, J.; Tinoco, P.; Almendros, G. Soil parameters related with sorption of 2,4-D and atrazine. Commun. Soil Sci. Plant Anal. 2003, 34, 1119–1133. DOI: 10.1081/CSS-120019114.
  • Hyun, S.; Lee, L. S. Effect of chemical acidity and acid functional group on organic acid sorption by variable-charge soils. Environ. Sci. Technol. 2004, 38, 5413–5419. DOI: 10.1021/es0494914.
  • Hyun, S.; Lee, L. S. Quantifying the contribution of different sorption mechanisms for 2,4-dichlorophenoxyacetic acid sorption by several variable-charge soils. Environ. Sci. Technol. 2005, 39, 2522–2528. DOI: 10.1021/es048820p.
  • Vasudevan, D.; Cooper, E. M. 2,4-D sorption in iron oxide-rich soils: role of soil phosphate and exchangeable Al. Environ. Sci. Technol. 2004, 38, 163–170.
  • Prata, F.; Lavorenti, A.; Regitano, J. B.; Tornisielo, V. L. Influence of organic matter in sorption and desorption of glyphosate in soils with different mineralogical attributes. Revista Brasileira de Ciência de Solo 2000, 24, 947–951.
  • da Cruz, L. H.; de Santana, H.; Zaia, C. T. B. V.; Zaia, D. A. M. Adsorption of glyphosate on clays and soils from Paraná State: effect of pH and competitive adsorption of phosphate. Braz. Arch. Biol. Technol. 2007, 50, 385–394. DOI: 10.1590/S1516-89132007000300004.
  • Ololade, O. O.; Ololade, I. A.; Ajayi, O. O.; Oladoja, N. A.; Alomaja, F.; Oloye, F. F.; Adelagun, R. O. A.; Agbeniyi, A.; Alabi, B. A.; Akerele, D. D. Interactive influence of Fe-Mn and organic matter on pentachlorophenol sorption under oxic and anoxic conditions. J. Environ. Chem. Eng. 2016, 4, 1899–1909. DOI: 10.1016/j.jece.2016.03.001.
  • Ololade, I. A.; Adeola, A. O.; Oladoja, N. A.; Ololade, O. O.; Nwaolisa, S. U.; Alabi, A. B.; Ogungbe, I. V. In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives. J. Environ. Chem. Eng. 2018, 6, 3485–3494. DOI: 10.1016/j.jece.2018.05.034.
  • Dohrmann, R. Cation exchange capacity methodology II: a modified silver thiourea method. Appl. Clay Sci. 2006, 34, 38–46. DOI: 10.1016/j.clay.2006.02.009.
  • Nelson, D. W.; Sommers, I. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2. Chemical and Microbial Properties. 2nd ed.; Page, A.L., Ed. Agron. Monogr. 9. American Society of Agronomy: Madison, WI, 1982, pp 539–579.
  • Balistrieri, L. S.; Murray, J. W. The surface chemistry of goethite (α-FeOOH) in major ion seawater. Am. J. Sci. 1981, 281, 788–806. DOI: 10.2475/ajs.281.6.788.
  • Frank, K.; Geegle, D.; Denning, J. Phosphorus. In Recommended Chemical Soil Test Procedures for the North Central Region; Brown, J. R., Ed.; Missouri Agricultural Experiment Station: Missouri, USA, 2011; 21–26.
  • OECD, Organization for Economic Cooperation and Development (OECD). Guideline for the Testing of Chemicals. A Sorption-Desorption Using a Batch Equilibrium Method. 2000; 106, Paris.
  • Mayakaduwa, S. S.; Kumarathilaka, P.; Herath, I.; Ahmad, M.; Al-Wabel, M.; Ok, Y. S.; Usman, A.; Abduljabbar, A.; Vithanage, M. Equilibrium and kinetic mechanisms of woody biochar on aqueous glyphosate removal. Chemosphere 2016, 144, 2516–2521. DOI: 10.1016/j.chemosphere.2015.07.080.
  • Bhaskara, B. L.; Nagaraja, P. Direct sensitive spectrophotometric determination of glyphosate by using ninhydrin as a chromogenic reagent in formulations and environmental water samples. Helv. Chim. Acta 2006, 89, 2686–2693. DOI: 10.1002/hlca.200690240.
  • Schwarzenbach, R. P.; Gschwend, P. M.; Imboden, D. M. Environmental Organic Chemistry. John Wiley and Sons: New York, 1993.
  • Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity. 2nd ed.; Academic Press: Weinheim, 1982.
  • Mamindy-Pajany, Y.; Sayen, S.; Mosselmans, J. F. W.; Guillon, E. Copper, nickel and zinc speciation in a biosolid-amended soil: pH adsorption edge, μ-XRF and μ-XANES investigations. Environ. Sci. Technol. 2014, 48, 7237–7244. DOI: 10.1021/es5005522.
  • Ghafoor, A.; Jarvis, N. J.; Stenstrom, J. Modelling pesticide sorption in the surface and subsurface soils of an agricultural catchment. Pest Manag. Sci. 2013, 69, 919–929. DOI: 10.1002/ps.3453.
  • Kumari, K. G. I. D.; Moldrup, P.; Paradelo, M.; Elsgaard, L.; de Jonge, L. W. Soil properties control glyphosate sorption in soils amended with birch wood biochar. Water Air Soil Pollut. 2016, 227, 174.
  • Gimsing, A. L.; Borggaard, O. K. Effect of KCl and CaCl2 as background electrolytes on the competitive adsorption of glyphosate and phosphate on goethite. Clays Clay Miner. 2001, 49, 270–275. DOI: 10.1346/CCMN.2001.0490310.
  • Liu, F.; He, J.; Colombo, C.; Violante, A. Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci. 1999, 164, 180–189. DOI: 10.1097/00010694-199903000-00004.
  • Martin, M. J. S.; Villa, M. V.; Camazano, M. S. Glyphosate-hydrotalcite interaction as influenced by pH. Clays Clay Miner. 1999, 47, 777–783.
  • Fox, R. L. Studies on phosphorus nutrition in the tropics. In Mineral Nutrition of Legumes in Tropical and Subtropical Soils; Andrew, C.S., Kamprath, E.J., Eds.; 1978; 169–187, CSIRO: Brisbane, Australia.
  • Mott, C. J. B. Anion and ligand exchange. In The Chemistry of Soil Processes; Greenland, D.J., Hayes, M.H.B., Eds.; John Wiley and Sons: Chichester, England, 1981; 179–219.
  • Salloum, M. J.; Dudas, M. J.; McGill, W. B. Variation of 1-naphthol sorption with organic matter fractionation: the role of physical conformation. Org. Geochem. 2001, 32, 709–719. DOI: 10.1016/S0146-6380(01)00007-9.
  • Bonin, J. L.; Simpson, M. J. Variation in phenanthrene sorption coefficients with soil organic matter fractionation: the result of structure or conformation? Environ. Sci. Technol. 2007, 41, 153–159.
  • Laitinen, P.; Siimes, K.; Rämö, S.; Jauhiainen, L.; Eronen, L.; Oinonen, S.; Hartikainen, H. Effects of soil phosphorus status on environmental risk assessment of glyphosate and glufosinate-ammonium. J. Environ. Qual. 2008, 37, 830–838. DOI: 10.2134/jeq2007.0256.
  • Paradelo, M.; Norgaard, T.; Ferré, T. P. A.; Moldrup, P.; Kumari, K. G. I. D.; Arthur, E.; de Jonge, L. W. Prediction of the glyphosate sorption coefficient in soils from two loamy agricultural fields. Geoderma 2015, 259-260, 224–232. DOI: 10.1016/j.geoderma.2015.06.011.
  • Madrid, L.; Diaz-Barrientos, E. Effect of phosphate on the adsorption of 2,4-dichlorophenoxyl acetic acid on lepidocrocitic. Soil Res. 1991, 29, 15–23. DOI: 10.1071/SR9910015.
  • Wang, Y. J.; Zhou, D. M.; Sun, R. J. Effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils. J. Environ. Sci. (China) 2005, 17, 711–715.
  • Gao, J.; Pedersen, J. A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. DOI: 10.1021/es050644c.
  • Ran, Y.; Sun, K.; Ma, X.; Wang, G. H.; Grathwohl, P.; Zeng, E. Y. Effect of condensed organic matters on solvent extraction and aqueous leaching of pahs based in soils and sediments. J. Environ. Pollut. 2007, 43, 111–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.