Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 10
313
Views
14
CrossRef citations to date
0
Altmetric
Articles

Effect of a mixture of flufenacet and isoxaflutole on population numbers of soil-dwelling microorganisms, enzymatic activity of soil, and maize yield

, , , &

References

  • Tejda, M.; Morillo, E.; Gómez, I.; Madrid, F.; Undabeytia, T. Effect of controlled release formulations of diuron and alachlor herbicides on the biological activity of agricultural soils. J. Hazard Mater. 2017, 322, 334–347. DOI: 10.1016/j.jhazmat.2016.10.002.
  • Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. DOI: 10.1007/s13593-012-0105-x.
  • Zhang, W.; Jiang, F.; Ou, J. Global pesticide consumption and pollution: with China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125.
  • Oerke, E. C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. DOI: 10.1017/S0021859605005708.
  • Soltani, N.; Dille, J. A.; Burke, I. C.; Everman, J. W.; VanGessel, M. J.; Davis, M. V.; Sikkema, P. H. Potential corn yield losses from weeds in North America. Weed Technol. 2016, 30, 979–984. DOI: 10.1614/WT-D-16-00046.1.
  • Richter, E.D. Acute human poisonings. In Encyclopedia of Pest Managment, Pimentel, D., Eds.; Dekker: New York, 2002; 3–6.
  • Kalia, A.; Gosal, K. S. Effect of pesticide application on soil microorganisms. Arch. Agron. Soil Sci. 2011, 57, 569–596. DOI: 10.1080/03650341003787582.
  • Zain, M. M. N.; Mohmad, R. B.; Sijam, K.; Morshed, M. M.; Awang, Y. Effect of selected herbicides in vitro in soil growth and development of soil fungi from oil palm plantation. Int. J. Agric. Biol. 2013, 15, 820–826.
  • Kumar, S.; Chaudhuri, S.; Maiti, S. K. Soil dehydrogenases enzyme activity in natural and mine soil – a review. Middle East J. Sci. Res. 2013, 13, 898–906.
  • Makoi, J. H.; Ndakidemi, P. A. Selected Soil Enzymes: examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 2008, 7, 181–191.
  • Ranum, P.; Peña-Rosas, J. P.; Garcia-Casal, M. N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. DOI: 10.1111/nyas.12396.
  • Samant, T. K.; Dhir, B. C.; Mohanty, B. Weed growth, yield components, productivity, economics and nutrient uptake of maize (Zea mays L.) as influenced by various herbicide applications under rainfed condition. Sch. J. Agric. Vet. Sci. 2015, 2, 79–83.
  • Williams, M. K.; Heiniger, R. W.; Everman, W. J.; Jordan, D. L. Weed Control and corn (Zea mays) response to planting pattern and herbicide program with high seeding rates in North Carolina. Adv. Agric. Sci. 2014, 2014, 1–8. DOI: 10.1155/2014/261628.
  • Milan, M.; Ferrero, A.; Letey, M.; De Palo, F.; Vidotto, F. Effect of buffer strips and soil texture on runoff losses of flufenacet and isoxaflutole from maize fields. J. Environ. Sci. Health B 2013, 48, 1021–1033. DOI: 10.1080/03601234.2013.824239.
  • Gupta, S.; Gajbhiye, V. T. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere 2002, 47, 901–906. DOI: 10.1016/S0045-6535(02)00017-6.
  • Rouchaud, J.; Neus, O.; Cools, K.; Bulcke, R. Flufenacet Soil Persistence and mobility in corn and wheat crops. Bull. Environ. Contam. Toxicol. 1999, 63, 460–466.
  • Alletto, L.; Coquet, Y.; Bergheaud, V.; Benoit, P. Water Pressure Head and temperature impact on isoxaflutole degradation in crop residues and loamy surface soil under conventional and conservation tillage management. Chemosphere 2012, 88, 1043–1050. DOI: 10.1016/j.chemosphere.2012.05.021.
  • Pallett, K. E.; Cramp, S. M.; Little, J. P.; Veerasekaran, P.; Crudace, A. J.; Slater, A. E. Isoxaflutole: The Background to its discovery and the basis of its herbicidal properties. Pest Manag. Sci. 2001, 57, 133–142. DOI: 10.1002/1526-4998(200102)57:2<133::AID-PS276>3.0.CO;2-0.
  • Viviani, F.; Little, J. P.; Pallett, K. E. The Mode of action of isoxaflutole II. Characterization of the inhibition of carrot 4-hydroxyphenylpyruvate dioxygenase by the dikotonitrile derivative of isoxaflutole. Pest Biochem. Physiol. 1998, 62, 125–134. DOI: 10.1006/pest.1998.2375.
  • World Reference Base for Soil Resources, A framework for international classification, correlation and communication. World Soil Resources Report. FAO, Rome, 2014, 103.
  • Kucharski, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A.; Wyszkowska, J. J. Enzyme Activity and microorganisms diversity in soil contaminated with the herbicide Boreal 58 WG. J. Environ. Sci. Health 2016, 51, 446–454. DOI: 10.1080/03601234.2016.1159456.
  • Safety Data Sheet – Boreal 58, WG Bayer Crop Science.
  • Baćmaga, M.; Kucharski, J.; Wyszkowska, J.; Borowik, A.; Tomkiel, M. Responses of microorganisms and enzymes to soil contamination with metazachlor. Environ. Earth Sci. 2014, 72, 2251–2262.
  • Sarathachandra, S. U.; Burch, G.; Cox, N. R. Growth Patterns of bacterial communities in the rhizoplane and rhizosphere of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.). In long-term pasture. Appl. Soil. Ecol. 1997, 6, 293–299. DOI: 10.1016/S0929-1393(97)00015-2.
  • De Leij, F. A. A. M.; Whipps, J. M.; Lynch, J. M. The use of colony development for the characterization of bacterial communities in soil and on roots. Microb. Ecol. 1994, 27, 81–97. DOI: 10.1007/BF00170116.
  • Borowik, A.; Wyszkowska, J.; Kucharski, J.; Baćmaga, M.; Tomkiel, M. Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. Environ. Sci. Pollut. Res. 2017, 24, 1910–1925.
  • Wyszkowska, J.; Borowik, A.; Kucharski, M.; Kucharski, J. Applicability of biochemical indices to quality assessment of soil polluted with heavy metal. J. Elementol. 2013, 18, 723–732.
  • Carter M.R. In Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers: London, 1993, 823.
  • Nelson, D. W.; Sommers, L. E. Total carbon, organic, and organic matter. Methods Soil Anal. 1996, 3, 961–1010.
  • Statsoft, Inc, Statistica. 2018. Data analysis software system, version 12.5 <http://www.statsoft.com>.
  • Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticide use in agriculture: their benefits and hazard. Interdiscip. Toxicol. 2009, 2, 1–12. DOI: 10.2478/v10102-009-0001-7.
  • DeLorenzo, M. E.; Scott, G. I.; Ross, P. E. Toxicity of pesticides to aquatic microorganisms: a review. Environ. Toxicol. Chem. 2001, 20, 84–98.
  • Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. Res. 2015, 22, 643–656. DOI: 10.1007/s11356-014-3395-5.
  • Mahapatra, B.; Adak, T.; Patil, N. K. B.; Pandi G, G. P.; Gowda, G. B.; Jambhulkar, N. N.; Yadav, M. K.; Panneerselvam, P.; Kumar, U.; Munda, S.; Jena, M. Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotox. Environ. Safe 2017, 144, 123–130. DOI: 10.1016/j.ecoenv.2017.06.013.
  • Wyszkowska, J.; Tomkiel, M.; Baćmaga, M.; Borowik, A. Kucharski, J.; Response of microorganisms and enzymes to soil contamination with a mixture of pethoxamid terbuthylazine. Environ. Earth. Sci. 2016, 75, 1285.
  • Bonfleur, E. J.; Tornisielo, V. L.; Regitano, J. B.; Lavorenti, A. The Effects of glyphosate and atrazine mixture on soil microbial population and subsequent impacts on their fate in a tropical soil. Water. Air. Soil Pollut. 2015, 226, 21. DOI: 10.1007/s11270-014-2190-8.
  • Kennedy, A. C.; Papendick, R. I. Microbial characteristic of soil quality. J. Soil Water Conser. 1995, 50, 243–248.
  • Tomkiel, M.; Baćmaga, M.; Wyszkowska, J.; Kucharski, J.; Borowik, A. The Effect of carfentrazone-ethyl on soil microorganisms and soil enzymes activity. Arch. Environ. Prot. 2015, 41, 3–10. DOI: 10.1515/aep-2015-0025.
  • Sofo, A.; Scopa, A.; Dumontet, S.; Mazzatura, A.; Pasquale, V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health B 2012, 47, 653–659. DOI: 10.1080/03601234.2012.669205.
  • Tomkiel, M.; Wyszkowska, J.; Kucharski, Baćmaga, A.; Borowik, M. Response of microorganisms and enzymes to soil contamination with the herbicide Successor T 550 SE. Environ. Protect. Engine 2014, 40, 15–27.
  • Ayansina, A. D. V.; Oso, B.A. Effect of two commonly used herbicides on soil microflora at two different concentrations. Afr. J. Biotechnol. 2006, 5, 129–132.
  • Sebiomo, A.; Ogundero, W. V.; Bankole, S. A. Effect of four Herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 2011, 10, 770–778.
  • Zhang, C.; Liu, X.; Dong, F.; Xu, J.; Zheng, Y.; Li, J. Soil microbial communities response to herbicide 2, 4-dichlorophenoxyacetic acid butyl ester. Eur. J. Soil Biol. 2010, 46, 175–180.
  • Griffiths, B. S.; Philippot, L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiol. Rev. 2013, 37, 112–129. DOI: 10.1111/j.1574-6976.2012.00343.x.
  • Maqbool, Z.; Hussain, S.; Imran, M.; Mahmood, F.; Shahzad, T.; Ahmed, Z.; Azeem, F. S. Perspectives of using Fungi as bioresource for bioremediation of pesticides in the environment a critical review. Environ. Sci. Pollut. Res. 2016, 23, 16904–16925.
  • Baćmaga, M.; Kucharski, J.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ. Monit. Assess. 2015, 187, 615.DOI: 10.1007/s10661-015-4827-5.
  • Sannino, F.; Gianfreda, L. Pesticide Influence on soil enzymatic activities. Chemosphere 2001, 45, 417–425. DOI: 10.1016/S0045-6535(01)00045-5.
  • Perrucci, P.; Scarponi, L. Effects of the herbicide imazethapyr on soil microbial biomass and various soil enzyme activities. Biol. Fertil. Soils 1994, 17, 237–240. DOI: 10.1007/BF00336329.
  • Tejda, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate. + Diflufenican Herbicides. Chemosphere 2009, 76, 365–373.
  • Elbashier, M. M. A.; Shao, X. M.; Mohmmed, A.; Ali, A. A. S.; Osman, B. H. Effect of pesticide residues (Sevin) on Carrot (Daucus carota L.) and free nitrogen fixers (Azotobacter spp.). AS. 2016, 7, 93–99. DOI: 10.4236/as.2016.72009.
  • Kucharski, J.; Wyszkowska, J. Biological properties of soil contaminated with the herbicide Apyros 75 WG. J. Elementol. 2008, 13, 357–371.
  • Kemmitt, S. J.; Wright, D.; Goulding, K. W.; Jones, D. L. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 2006, 38, 898–911. DOI: 10.1016/j.soilbio.2005.08.006.
  • Wyszkowska, J.; Kucharski, J. Biochemical and physicochemical properties of soil contaminated with herbicide Triflurotox 250 EC. Pol. J. Environ. Stud. 2004, 13, 223.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.