Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 12
594
Views
31
CrossRef citations to date
0
Altmetric
Articles

Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework

, , , , , & show all

References

  • Kumar, P. A. K.; Paul, A. Deep. Sensitive Chemosensing of Nitro Group Containing Organophosphate Pesticides with MOF-5. Microporous Mesoporous Mater. 2014, 195, 60–941. DOI: 10.1016/j.micromeso.2014.04.017.
  • Lang, Q. L.; Han, C.; Hou, F.; Wang, A. Liu. A Sensitive Acetylcholinesterase Biosensor Based on Gold Nanorods Modified Electrode for Detection of Organophosphate Pesticide. Talanta 2016, 156, 34–41. DOI: 10.1016/j.talanta.2016.05.002.
  • Zhou, L. X.; Zhang, L.; Ma, J.; Gao, Y. Jiang. Acetylcholinesterase/Chitosan-Transition Metal Carbides Nanocomposites-Based Biosensor for the Organophosphate Pesticides Detection. Biochem. Eng. J. 2017, 128, 243–249. DOI: 10.1016/j.bej.2017.10.008.
  • Selmi, S. K.; Rtibi, D.; Grami, H.; Sebai, L. Marzouki. Malathion, an Organophosphate Insecticide, Provokes Metabolic, Histopathologic and Molecular Disorders in Liver and Kidney in Prepubertal Male Mice. Toxicology Reports 2018, 5, 189–195. DOI: 10.1016/j.toxrep.2017.12.021.
  • Ebrahim, S. R.; El-Raey, A.; Hefnawy, H.; Ibrahim, M.; Soliman, T. M. Abdel-Fattah. Electrochemical Sensor Based on Polyaniline Nanofibers/Single Wall Carbon Nanotubes Composite for Detection of Malathion. Synth. Met. 2014, 190, 13–19. DOI: 10.1016/j.synthmet.2014.01.021.
  • Prabhakar, N. H.; Thakur, A.; Bharti, N. Kaur. Chitosan-Iron Oxide Nanocomposite Based Electrochemical Aptasensor for Determination of Malathion. Anal. Chim. Acta 2016, 939, 108–116. DOI: 10.1016/j.aca.2016.08.015.
  • Navarrete-Meneses, M. C.; Salas-Labadía, M.; Sanabrais-Jiménez, J.; Santana-Hernández, A.; Serrano-Cuevas, R.; Juárez-Velázquez, A.; Olaya-Vargas, P. Pérez-Vera. Exposure to the Insecticides Permethrin and Malathion Induces Leukemia and Lymphoma-Associated Gene Aberrations in Vitro. Toxicol. In Vitro 2017, 44, 17–26. DOI: 10.1016/j.tiv.2017.06.013.
  • Long, Q. H.; Li, Y.; Zhang, S. Yao. Upconversion Nanoparticle-Based Fluorescence Resonance Energy Transfer Assay for Organophosphorus Pesticides. Biosens. Bioelectron. 2015, 68, 168–174. DOI: 10.1016/j.bios.2014.12.046.
  • Souza Tette, P. A. L.; Rocha Guidi, M. B.; de Abreu Glória, C. Fernandes. Pesticides in Honey: A Review on Chromatographic Analytical Methods. Talanta 2016, 149, 124–141. DOI: 10.1016/j.talanta.2015.11.045.
  • Li, H. X.; Yan, G.; Lu, X. Su. Carbon Dot-Based Bioplatform for Dual Colorimetric and Fluorometric Sensing of Organophosphate Pesticides. Sensors Actuators B: Chem. 2018, 260, 563–570. DOI: 10.1016/j.snb.2017.12.170.
  • Du, D. M.; Wang, J.; Cai, A. Zhang. Sensitive Acetylcholinesterase Biosensor Based on Assembly of β-Cyclodextrins onto Multiwall Carbon Nanotubes for Detection of Organophosphates Pesticide. Sensors Actuators B: Chem. 2010, 146, 337–341. DOI: 10.1016/j.snb.2010.02.053.
  • Donato, F. F. N. M. G.; Bandeira, G. C.; dos Santos, O. D.; Prestes, M. B.; Adaime, R. Zanella. Evaluation of the Rotating Disk Sorptive Extraction Technique with Polymeric Sorbent for Multiresidue Determination of Pesticides in Water by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2017, 1516, 54–63. DOI: 10.1016/j.chroma.2017.08.025.
  • Chen, D. J.; Wang, Y.; Xu, D. Li. A Pure Shear Mode ZnO Film Resonator for the Detection of Organophosphorous Pesticides. Sens. Actuators B: Chem. 2012, 171–172, 1081–1086. DOI: 10.1016/j.snb.2012.06.037.
  • Raghu, P. B. E.; Kumara Swamy, T.; Madhusudana Reddy, B. N.; Chandrashekar, K. Reddaiah. Sol–Gel Immobilized Biosensor for the Detection of Organophosphorous Pesticides: A Voltammetric Method. Bioelectrochemistry 2012, 83, 19–24. DOI: 10.1016/j.bioelechem.2011.08.002.
  • Luan, E. Z.; Zheng, X.; Li, H.; Gu, S. Liu. Inkjet-Assisted Layer-by-Layer Printing of Quantum Dot/Enzyme Microarrays for Highly Sensitive Detection of Organophosphorous Pesticides. Anal. Chim. Acta 2016, 916, 77–83. DOI: 10.1016/j.aca.2016.02.019.
  • Bolat, G. S.; Abaci, T.; Vural, B.; Bozdogan, E. B. Denkbas. Sensitive Electrochemical Detection of Fenitrothion Pesticide Based on Self-Assembled Peptide-Nanotubes Modified Disposable Pencil Graphite Electrode. J. Electroanal. Chem. 2018, 809, 88–95. DOI: 10.1016/j.jelechem.2017.12.060.
  • Lu, Q. T.; Zhou, Y.; Wang, L.; Gong, J. Liu. Transformation from Gold Nanoclusters to Plasmonic Nanoparticles: A General Strategy towards Selective Detection of Organophosphorothioate Pesticides. Biosens. Bioelectron 2018, 99, 274–280. DOI: 10.1016/j.bios.2017.07.066.
  • Bui, M.-P. N. A. Abbas. Simple and Rapid Colorimetric Detection of p-Nitrophenyl Substituent Organophosphorous Nerve Agents. Sensors Actuators B: Chem. 2015, 207, 370–374. DOI: 10.1016/j.snb.2014.10.010.
  • Hryniewicz, B. M. E. S.; Orth, M. Vidotti. Enzymeless PEDOT-Based Electrochemical Sensor for the Detection of Nitrophenols and Organophosphates. Sensors Actuators B: Chem 2018, 257, 570–578. DOI: 10.1016/j.snb.2017.10.162.
  • Afkhami, A. H.; Khoshsafar, H.; Bagheri, T. Madrakian. Facile Simultaneous Electrochemical Determination of Codeine and Acetaminophen in Pharmaceutical Samples and Biological Fluids by Graphene–CoFe2O4 Nancomposite Modified Carbon Paste Electrode. Sens. Actuators B: Chem. 2014, 203, 909–918. DOI: 10.1016/j.snb.2014.07.031.
  • Sreedhar, N. Y. M.; Sunil Kumar, K. Krishnaveni. Sensitive Determination of Chlorpyrifos Using Ag/Cu Alloy Nanoparticles and Graphene Composite Paste Electrode. Sens. Actuators B: Chem. 2015, 210, 475–482. DOI: 10.1016/j.snb.2015.01.016.
  • Li, Y. C.; Huangfu, H.; Du, W.; Liu, Y.; Li, J. Ye. Electrochemical Behavior of Metal–Organic Framework MIL-101 Modified Carbon Paste Electrode: An Excellent Candidate for Electroanalysis. J. Electroanal. Chem. 2013, 709, 65–69. DOI: 10.1016/j.jelechem.2013.09.017.
  • Huang, Y.-B. J.; Liang, X.-S.; Wang, R. Cao. Multifunctional Metal–Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions. Chem. Soc. Rev. 2017, 46, 126–157. DOI: 10.1039/C6CS00250A.
  • Wu, M. X. Y. W. Yang. Metal–Organic Framework (MOF)‐Based Drug/Cargo Delivery and Cancer Therapy. Adv. Mater. 2017, 29, 1606134. DOI: 10.1002/adma.201606134.
  • Huang, R.-W. Y.-S.; Wei, X.-Y.; Dong, X.-H.; Wu, C.-X.; Du, S.-Q.; Zang, T. C. Mak. Hypersensitive Dual-Function Luminescence Switching of a Silver-Chalcogenolate Cluster-Based Metal-Organic Framework. Nat. Chem. 2017, 9, 689DOI: 10.1038/nchem.2718.
  • Zhao, Y. X.; Xu, L.; Qiu, X.; Kang, L.; Wen, B. Zhang. Metal–Organic Frameworks Constructed from a New Thiophene-Functionalized Dicarboxylate: Luminescence Sensing and Pesticide Removal. ACS Appl. Mater. Interfaces 2017, 9, 15164–15175. DOI: 10.1021/acsami.6b11797.
  • Liu, D. K.; Lu, C.; Poon, W. Lin. Metal-Organic Frameworks as Sensory Materials and Imaging Agents. Inorg. Chem. 2014, 53, 1916–1924. DOI: 10.1021/ic402194c.
  • Yuan, B. J.; Zhang, R.; Zhang, H.; Shi, X.; Guo, Y.; Guo, X.; Guo, S.; Cai, D. Zhang. Electrochemical and Electrocatalytic Properties of a Stable Cu-Based Metal–Organic Framework. Int. J. Electrochem. Sci. 2015, 10, 4899–4910.
  • Kumar, P. K.-H.; Kim, A. Deep. Recent Advancements in Sensing Techniques Based on Functional Materials for Organophosphate Pesticides. Biosens. Bioelectron. 2015, 70, 469–481. DOI: 10.1016/j.bios.2015.03.066.
  • Wang, Y. Y.; Wu, J.; Xie, X. Hu. Metal–Organic Framework Modified Carbon Paste Electrode for Lead Sensor. Sens. Actuators B: Chem. 2013, 177, 1161–1166. DOI: 10.1016/j.snb.2012.12.048.
  • Zhou, J. X.; Li, L.; Yang, S.; Yan, M.; Wang, D.; Cheng, Q.; Chen, Y.; Dong, P.; Liu, W.; Cai, C. Zhang. The Cu-MOF-199/Single-Walled Carbon Nanotubes Modified Electrode for Simultaneous Determination of Hydroquinone and Catechol with Extended Linear Ranges and Lower Detection Limits. Anal. Chim. Acta. 2015, 899, 57–65. DOI: 10.1016/j.aca.2015.09.054.
  • Xie, Y. Y.; Yu, L.; Lu, X.; Ma, L.; Gong, X.; Huang, G.; Liu, Y. Yu. CuO Nanoparticles Decorated 3D Graphene Nanocomposite as Non-Enzymatic Electrochemical Sensing Platform for Malathion Detection. J. Electroanal. Chem. 2018, 812, 82–89. DOI: 10.1016/j.jelechem.2018.01.043.
  • Alamgir Zaman Chowdhury, M. A. N. M.; Fakhruddin, M.; Nazrul Islam, M.; Moniruzzaman, S. H.; Gan, M. Khorshed Alam. Detection of the Residues of Nineteen Pesticides in Fresh Vegetable Samples Using Gas Chromatography–Mass Spectrometry. Food Control 2013, 34, 457–465. DOI: 10.1016/j.foodcont.2013.05.006.
  • Akoto, O. S.; Gavor, M. K.; Appah, J. Apau. Estimation of Human Health Risk Associated with the Consumption of Pesticide-Contaminated Vegetables from Kumasi, Ghana. Environ. Monit. Assess 2015, 187, 244.
  • Osei-Fosu, P. A.; Donkor, S.; Nyarko, N.; Nazzah, I.; Asante, R.; Kingsford-Adabo, N. Arkorful. Monitoring of Pesticide Residues of Five Notable Vegetables at Agbogbloshie Market in Accra. Environ. Monit. Assess. 2014, 186, 7157–7163. DOI: 10.1007/s10661-014-3917-0.
  • Suárez-Jacobo, A. V. M.; Alcantar-Rosales, D.; Alonso-Segura, M.; Heras-Ramírez, D.; Elizarragaz-De La Rosa, O.; Lugo-Melchor, O. Gaspar-Ramirez. Pesticide Residues in Orange Fruit from Citrus Orchards in Nuevo Leon State, Mexico. Food Additives Contam.: B. 2017, 10, 192–199. DOI: 10.1080/19393210.2017.1315743.
  • Al’Abri, A. M. S.; Mohamad, S. N. A.; Halim, N. K. A. Bakar. Development of Magnetic Porous Coordination Polymer Adsorbent for the Removal and Preconcentration of Pb (II) from Environmental Water Samples. Environ. Sci. Pollut. Res. 2019, 26, 1–17. DOI: 10.1007/s11356-019-04467-w.
  • Mahpishanian, S. H.; Sereshti, M. Baghdadi. Superparamagnetic Core–Shells Anchored onto Graphene Oxide Grafted with Phenylethyl Amine as a Nano-Adsorbent for Extraction and Enrichment of Organophosphorus Pesticides from Fruit, Vegetable and Water Samples. J. Chromatogr. A. 2015, 1406, 48–58. DOI: 10.1016/j.chroma.2015.06.025.
  • Rajaji, U. K.; Murugan, S.-M.; Chen, M.; Govindasamy, T.-W.; Chen, P. H.; Lin, P. Lakshmi Prabha. Graphene Oxide Encapsulated 3D Porous Chalcopyrite (CuFeS2) Nanocomposite as an Emerging Electrocatalyst for Agro-Hazardous (Methyl Paraoxon) Detection in Vegetables. Compos. Part B: Eng. 2019, 160, 268–276. DOI: 10.1016/j.compositesb.2018.10.042.
  • Ferro, E. C. C. A.; Cardoso, G. J. Arruda. Voltammetric Detection of Trifluralin in Tap Water, Fruit Juice, and Vegetable Extracts in the Presence of Surfactants. J. Environ. Sci. Health, Part B 2017, 52, 762–769. DOI: 10.1080/03601234.2017.1356679.
  • Pandey, G. P. A. K.; Singh, L.; Deshmukh, S.; Prasad, L.; Paliwal, A.; Asthana, S. B. Mathew. A Novel and Sensitive Kinetic Method for the Determination of Malathion Using Chromogenic Reagent. Microchem. J. 2014, 113, 83–89. DOI: 10.1016/j.microc.2013.11.005.
  • Kalantary, R. R. A.; Azari, A.; Esrafili, K.; Yaghmaeian, M.; Moradi, K. Sharafi. The Survey of Malathion Removal Using Magnetic Graphene Oxide Nanocomposite as a Novel Adsorbent: thermodynamics, Isotherms, and Kinetic Study. Desalin. Water Treat. 2016, 57, 28460–28473. DOI: 10.1080/19443994.2016.1178605.
  • Huo, D. Q.; Li, Y.; Zhang, C.; Hou, Y. Lei. A Highly Efficient Organophosphorus Pesticides Sensor Based on CuO Nanowires–SWCNTs Hybrid Nanocomposite. Sens. Actuators B: Chem. 2014, 199, 410–417. DOI: 10.1016/j.snb.2014.04.016.
  • Soomro, R. A. K. R.; Hallam, Z. H.; Ibupoto, A.; Tahira, S. T. H.; SheraziSirajjuddin, S. S.; Memon, M. Willander. Amino Acid Assisted Growth of CuO Nanostructures and Their Potential Application in Electrochemical Sensing of Organophosphate Pesticide. Electrochim. Acta 2016, 190, 972–979.
  • Sel, K. S.; Demirci, E.; Meydan, S.; Yildiz, O. F.; Ozturk, H.; Al-Lohedan, N. Sahiner. Benign Preparation of Metal–Organic Frameworks of Trimesic Acid and Cu, Co or Ni for Potential Sensor Applications. J. Elec. Mater. 2015, 44, 136–143. DOI: 10.1007/s11664-014-3444-3.
  • Sun, L. C. H.; Hendon, M. A.; Minier, A.; Walsh, M. Dinca. Million-Fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC)(E = S, O). J. Am. Chem. Soc., 2015, 137, 6164–6167.
  • Sahiner, N. K.; Sel, O. F.; Ozturk, S.; Demirci, G. Terzi. Facile Synthesis and Characterization of Trimesic acid-Cu Based Metal Organic Frameworks. Appl. Surf. Sci. 2014, 314, 663–669. DOI: 10.1016/j.apsusc.2014.07.023.
  • Sel, K. S.; Demirci, O. F.; Ozturk, N.; Aktas, N. Sahiner. NH3 Gas Sensing Applications of Metal Organic Frameworks. Microelectron. Eng. 2015, 136, 71–76. DOI: 10.1016/j.mee.2015.04.035.
  • Kobayashi, Y. B.; Jacobs, M. D.; Allendorf, J. R. Long. Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal − Organic Framework. Chem. Mater. 2010, 22, 4120–4122. DOI: 10.1021/cm101238m.
  • Tian, X. L.; Liu, Y.; Li, C.; Yang, Z.; Zhou, Y.; Nie, Y. Wang. Nonenzymatic Electrochemical Sensor Based on CuO-TiO2 for Sensitive and Selective Detection of Methyl Parathion Pesticide in Ground Water. Sens. Actuators B: Chem 2018, 256, 135–142. DOI: 10.1016/j.snb.2017.10.066.
  • Smolen, J. M. A. T. Stone. Divalent Metal Ion-Catalyzed Hydrolysis of Phosphorothionate Ester Pesticides and Their Corresponding Oxonates. Environ. Sci. Technol. 1997, 31, 1664–1673. DOI: 10.1021/es960499q.
  • Tunesi, M. M. N.; Kalwar, M. W.; Abbas, S.; Karakus, R. A.; Soomro, A.; Kilislioglu, M. I.; Abro, K. R. Hallam, Functionalised CuO Nanostructures for the Detection of Organophosphorus Pesticides: A Non-Enzymatic Inhibition Approach Coupled with Nano-Scale Electrode Engineering to Improve Electrode Sensitivity. Sens. Actuators B: Chem. 2018, 260, 480–489.
  • Lovic, J. D. D. Z.; Mijin, M. B.; Jovanovic, O. S.; Glavaski, T. M.; Zeremski, S. D.; Petrovic, M. L. A. Ivic. An Investigation of Tebuconazole Degradation Using a Gold Electrode. Comptes Rendus Chim. 2016, 19, 639–645. DOI: 10.1016/j.crci.2016.01.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.