Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 12
100
Views
1
CrossRef citations to date
0
Altmetric
Articles

Influence of fungicide residues and in vitro gastrointestinal digestion on total antioxidant capacity and phenolic fraction of Graciano and Tempranillo red wines

, , , &

References

  • Sancho, M.; Mach, N. [Effects of wine polyphenols on cancer prevention]. Nutr. Hosp. 2014, 31, 535–551. DOI: 10.3305/nh.2015.31.2.8091.
  • Albertoni, G.; Schor, N. Resveratrol plays important role in protective mechanisms in renal disease-mini-review. J. Bras. Nefrol. 2015, 37, 106–114.
  • Calabrisso, N.; Scoditti, E.; Massaro, M.; Pellegrino, M.; Storelli, C.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M. A. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: Differential role of hydroxycinnamics acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur. J. Nutr. 2015, 1–13.
  • Schaffer, S.; Halliwell, B. Do polyphenols enter the brain and does it matter. Some theoretical and practical considerations. Genes Nutr. 2012, 7, 99–109. DOI: 10.1007/s12263-011-0255-5.
  • Artero, A.; Artero, A.; Tarín, J. J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. DOI: 10.1016/j.maturitas.2014.09.007.
  • Pérez-Mañá, C.; Farré, M.; Rodríguez-Morató, J.; Papaseit, E.; Pujadas, M.; Fitó, M.; Robledo, P.; Covas, M. I.; Cheynier, V.; Meudec, E.; et al. Moderate consumption of wine, through both its phenolic compounds and alcohol content, promotes, hydroxytyrosol endogenous generation in humans. A randomized controlled trial. Mol. Nutr. Food Res. 2015, 59, 1213–1216. DOI: 10.1002/mnfr.201400842.
  • Bischescu, C.; Bahrim, G.; Stanciuc, N.; Rapeanu, G. Effect of maceration on the making of Feteascaneagra wines. J. Food Agric. Environ. 2013, 11, 273–277.
  • Cassasa, L. F.; Harbertson, J. F. Extraction, evolution and sensory impact of phenolic compounds during red wine maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. DOI: 10.1146/annurev-food-030713-092438.
  • Lima, M. S.; Dutra, P. D. M.; Toaldo, I. M.; Correa, L. C.; Pereira, G. E.; Oliveira, D.; Bordignon-Luiz, M. T.; Ninow, J. L. Phenolic compounds organic acids and antioxidant activity of grape juices produced in industrial scale by different process of maceration. Food Chem. 2015, 188, 384–392. DOI: 10.1016/j.foodchem.2015.04.014.
  • Regueiro, J.; López-Fernández, O.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. A review on the fermentation of foods and the residues of pesticides—Biotransformation of pesticides and effects on fermentation and food quality. Crit. Rev. Food Sci. Nutr. 2015, 55, 839–863. DOI: 10.1080/10408398.2012.677872.
  • Oliva, J.; Mulero, J.; Payá, P.; Cámara, M. A.; Barba, A. Influence of several fungicides on the antioxidant activity of red wines (Var. Monastrell). J. Environ. Sci. Health. Part B 2009, 44, 546–552. DOI: 10.1080/03601230902997758.
  • Noguerol-Pato, R.; Sieiro-Sampedro, T.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Evaluation of effect of fenhexamid and mepanipirim in the volatile composition of Tempranillo and Graciano wines. Food Res. Int. 2015, 71, 108–117. DOI: 10.1016/j.foodres.2015.02.025.
  • Oliva, J.; Martínez, G.; Cermeño, S.; Motas, M.; Barba, A.; Cámara, M. A. Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. Eur. Food Res. Technol. 2018, 244, 1083–1090. DOI: 10.1007/s00217-017-3031-y.
  • Cermeño, S.; Martínez, G.; Oliva, J.; Cámara, M. A.; Barba, A. Influence of the presence of ethanol on in vitro bioavailability of fungicide residues. Food Chem. Toxicol. 2016, 93, 1–4. DOI: 10.1016/j.fct.2016.04.016.
  • Mulero, J.; Pardo, P.; Zafrilla, P. Antioxidant activity and phenolic compounds in control and organic red grapes (Var. Monastrell). CyTA-J Food 2010, 8, 185–191. DOI: 10.1080/19476330903335301.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Method Enzymol. 1999, 299,
  • Mulero, J.; Martínez, G.; Oliva, J.; Cermeño, S.; Cayuela, J. M.; Zafrilla, P.; Martínez-Cachá, A.; Barba, A. Phenolic compounds and antioxidant activity of red wine made from grapes treated with different fungicides. Food Chem. 2015, 180, 25–31. DOI: 10.1016/j.foodchem.2015.01.141.
  • Payá, P.; Mulero, J.; Oliva, J.; Cámara, M. A.; Barba, A. Influence of the matrix in bioavailability of flufenoxuron, lufenuron, pyriproxyfen and fenoxycarb residues in grapes and wine. Food Chem. Toxicol. 2013, 60, 419–423. DOI: 10.1016/j.fct.2013.08.013.
  • Cámara, M. A.; Barba, A.; Cermeño, S.; Martínez, G.; Oliva, J. Effect of processing on the disappearance of pesticide residues in fresh-cut lettuce: bioavailability and dietary risk. J. Environ. Sci. Health. Part B 2017, 52, 880– 886. DOI: 10.1080/03601234.2017.1361767.
  • Pérez-Magariño, S.; González-San José, M. L. Evolution of flavonols, anthocyanins and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of rippering. J. Agric. Food Chem. 2004, 52, 1181–1189. DOI: 10.1021/jf035099i.
  • Sun, B.; Neves, A. C.; Fernandes, T. A.; Mateus, N.; De-Freitas, V.; Lenadro, C.; Spranger, M. I. Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. J. Agric. Food Chem. 2011, 59, 6550–6557. DOI: 10.1021/jf201383e.
  • Arnous, A.; Makris, D. P.; Kefalas, P. Correlation of pigment and flavanol content with antioxidant properties in selected aged regional wines from Greece. J. Food Compost. Anal. 2002, 15, 655–665. DOI: 10.1006/jfca.2002.1070.
  • Mulero, J.; Pardo, P.; Zafrilla, P. Effect of principal polyphenolic components in relation to antioxidant activity in conventional and organic red wines during storage. Eur. Food Res. Technol. 2009, 229, 807–812. DOI: 10.1007/s00217-009-1117-x.
  • Perales, S.; Barbera, R.; Lagarda, M.; Farre, R. Antioxidant capacity of infant fruit beverages: Influence of storage and in vitro gastrointestinal digestion. Nutr. Hosp. 2008, 23, 547–553.
  • Cerezo, A. B.; Cuevas, E.; Winterhalter, P.; García-Parrilla, M. C.; Troncoso, A. M. Isolation, identification, and antioxidant activity of anthocyanin compounds in camarosa strawberry. Food Chem. 2010, 123, 574–582. DOI: 10.1016/j.foodchem.2010.04.073.
  • Tavares, L.; Figueira, I.; Macedo, D.; Mcdougall, G. J.; Leirao, M. C.; Viera, H. L. A.; Stewar, D.; Alves, P. M.; Ferreira, R. B.; Santos, C. N. Neuroprotective effect of blackberry (Rubussp. ) Polyphenols is potentiated after simulated gastrointestinal digestion. Food Chem. 2012, 131, 1443–1452.
  • Cilla, A.; Perales, S.; Lagarda, M.; Barberá, R.; Clemente, G.; Farre, R. Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. J. Food Compos. Anal. 2011, 24, 87–94. DOI: 10.1016/j.jfca.2010.03.029.
  • Wootton-Beard, P. C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin–Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. DOI: 10.1016/j.foodres.2010.10.033.
  • Chandrasekara, A.; Shahidi, F. Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Funct. Foods 2012, 4, 226–237. DOI: 10.1016/j.jff.2011.11.001.
  • Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. DOI: 10.1021/jf0113833.
  • Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialyzable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. DOI: 10.1016/j.foodchem.2011.10.030.
  • Fazzari, M.; Fukumoto, L.; Mazza, G.; Livrea, M. A.; Tesorier, E. L.; Di Marco, L. In vitro bioavailability of phenolic compounds from five cultivars of frozen sweet cherries (Prunusavium L.). J. Agric. Food Chem. 2008, 56, 3561–3568. DOI: 10.1021/jf073506a.
  • McDougall, G. J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 2005, 53, 5896–5904. DOI: 10.1021/jf050131p.
  • McDougall, G. J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red wine. Their stability under simulated gastrointestinal digestion. Phytochemistry 2005, 66, 2540–2548. DOI: 10.1016/j.phytochem.2005.09.003.
  • Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. DOI: 10.1016/j.foodchem.2009.10.030.
  • Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. DOI: 10.1016/j.foodchem.2011.02.052.
  • Fernandes, I.; Nave, F.; Gonçalves, R.; Freitas, V.; Mateus, N. On the bioavailability of flavanols and anthocyanins: Flavanol-anthocyanin dimers. Food Chem. 2012, 135, 812–818. DOI: 10.1016/j.foodchem.2012.05.037.
  • Kahle, K.; Kempf, M.; Schreier, P.; Scheppach, W.; Schrenk, D.; Kautenburger, T.; Hecker, D.; Huemmer, W.; Ackermann, M.; Richling, E. Intestinal transit and systemic metabolism of apple polyphenols. Eur. J. Nutr. 2011, 50, 507–522. DOI: 10.1007/s00394-010-0157-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.