Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 12
249
Views
10
CrossRef citations to date
0
Altmetric
Articles

Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli

ORCID Icon, & ORCID Icon

References

  • Holm, G.L.; Plucknett, D.L.; Pancho, J.V.; Herber, J.P. The World’s Worst Weeds: Distribution and Ecology. Krieger Publishing Company: Malabar, FL, 1991; 609 p.
  • Ottis, B.V.; Talbert, R. E. Barnyard grass (Echinochloa Crus-Galli) control and rice density effects on rice yield components. Weed Technol. 2007, 21, 110–118. DOI: 10.1614/WT-06-018.1.
  • Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. DOI: 10.1016/S0040-4020(02)00052-2.
  • Isman, M.B.; Miresmailli, S.; MacHial, C. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochem. Rev. 2011, 10, 197–204. DOI: 10.1007/s11101-010-9170-4.
  • Windholz, M.; Budavari, S.; Blumetti, R.F.; E. S, O. The Merck Index. Merck: Rahway, NJ, 1983.
  • Templeton, W. An Introduction of Chemistry of Terpenoids and Steroids. Butterworths: London, 1969.
  • Tsao, R.; Coats, J.R. Starting from nature to make better insecticides. Chemtech 1995, 25, 23–28.
  • Singh, H.P.; Batish, D.R.; Kaur, S.; Ramezani, H.; Kohli, R.K. Comparative phytotoxicity of four monoterpenes against Cassia occidentalis. Ann. Appl. Biol. 2002, 141, 111–116. DOI: 10.1111/j.1744-7348.2002.tb00202.x.
  • Cantore, P.L.; Shanmugaiah, V.; Iacobellis, N.S. Antibacterial activity of essential oil components and their potential use in seed disinfection. J. Agric. Food Chem. 2009, 57, 9454–9461. DOI: 10.1021/jf902333g.
  • Chaimovitsh, D.; Shachter, A.; Abu-Abied, M.; Rubin, B.; Sadot, E.; Dudai, N. Herbicidal activity of monoterpenes is associated with disruption of microtubule functionality and membrane integrity. Weed Sci. 2017, 65, 19–30. DOI: 10.1614/WS-D-16-00044.1.
  • Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430. DOI: 10.1080/14786419.2017.1419232.
  • Saad, M.M.G.; El-Deeb, D.A.; Abdelgaleil, S.A.M. Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle. Environ. Sci. Pollut. Res. 2019, 26, 6801–6810. DOI: 10.1007/s11356-019-04151-z.
  • Benzoukian, P.Z. Perfumery and Flavoring Synthetics. Allured Publishing: Miami, 1986.
  • Cheng, S.-S.; Liu, J.-Y.; Chang, E.-H.; Chang, S.-T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technol. 2008, 99, 5145–5149. DOI: 10.1016/j.biortech.2007.09.013.
  • Ahuja, N.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Herbicidal activity of eugenol towards some grassy and broad-leaved weeds. J. Pest Sci. 2015, 88, 209–218. DOI: 10.1007/s10340-014-0570-x.
  • Saad, M.M.G.; Abou-Taleb, H.K.; Abdelgaleil, S.A.M. Insecticidal activities of monoterpenes and phenylpropenes against Sitophilus oryzae and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases. Appl. Entomol. Zool. 2018, 53, 173–181. DOI: 10.1007/s13355-017-0532-x.
  • Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2000, 17, 483–504.
  • Goren, N.; Woerdenbag, H.J.; Bozok-Johansson, C. Cytotoxic and antibacterial activities of sesquiterpene lactones isolated from Tanacetum praeteritum subsp praeteritum. Planta Med. 1996, 62, 419–422. DOI: 10.1055/s-2006-957930.
  • Batish, D.R.; Singh, H.P.; Kohli, R.K.; Xaxena, D.B.; Kaur, S. Allelopathic effects of parthenin against two weedy species, Avena fatua and Bidens pilosa. Environ. Exp. Bot. 2002, 47, 149–155. DOI: 10.1016/S0098-8472(01)00122-8.
  • Abdelgaleil, S.A.M.; Abdel-Razeek, N.; Soliman, S.A. Herbicidal activity of three sesquiterpene lactones on wild oat (Avena fatua) and their possible mode of action. Weed Sci. 2009, 57, 6–9. DOI: 10.1614/WS-08-093.1.
  • Hussain, A.; Rizwan-Ul-Haq, M.; AlJabr, A.M.; Al-Ayedh, H. Lethality of sesquiterpenes reprogramming red palm weevil detoxification mechanism for natural novel biopesticide development. Molecules 2019, 24, 1648–1661. DOI: 10.3390/molecules24091648.
  • De Martino, L.; Mancini, E.; Almeida, L.F.R.; De Feo, V. The antigerminative activity of twenty-seven monoterpenes. Molecules 2010, 15, 6630–6637. DOI: 10.3390/molecules15096630.
  • Gouda, N.A.A.; Saad, M.M.G.; Abdelgaleil, S.A.M. Pre and post herbicidal activity of monoterpenes against barnyard grass (Echinochloa crus-galli). Weed Sci. 2016, 64, 191–200. DOI: 10.1614/WS-D-15-00045.1.
  • Stokłosa, A.; Matraszek, R.; Isman, M.B.; Upadhyaya, M.K. Phytotoxic activity of clove oil, its constituents, and its modification by light intensity in broccoli and common lambsquarters (Chenopodium album). Weed Sci. 2012, 60, 607–611. DOI: 10.1614/WS-D-11-00210.1.
  • Choi, H.-J.; Sowndhararajan, K.; Cho, N.-G.; Hwang, K.-H.; Koo, S.-J.; Kim, S. Evaluation of herbicidal potential of essential oils and their components under in vitro and greenhouse experiments. Weed Turf. Sci. 2015, 4, 321–329. DOI: 10.5660/WTS.2015.4.4.321.
  • Saad, M.M.G.; Abdelgaleil, S.A.M.; Suganuma, T. Herbicidal potential of pseudoguaninolide sesquiterpenes on wild oat, Avena fatua L. Biochem. Syst. Ecol. 2012, 44, 333–337.
  • Cohort Software Inc. Costat User’s Manual. Version 3. Cohort: Tucson, AZ, 1985.
  • Finney, D. J. Probit Analysis. 3rd ed. Cambridge University Press: London, 1971; 318 p.
  • Singh, H. P.; Batish, D. R.; Kaur, S.; Kohli, R. K.; Arora, K. Phytotoxicity of the volatile monoterpene citronellal against some weeds. Z. Naturforsch. 2006a, 61c, 334–340. DOI: 10.1515/znc-2006-5-606.
  • Abrahim, D.; Braguini, W.L.; Kelmer-Bracht, A.M.; Ishii-Iwamoto, E.L. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize. J. Chem. Ecol. 2000, 26, 611–624.
  • De Feo, V.; Simone, F. D.; Senatore, F. Potential allelochemicals from the essential oil of Ruta graveolens. Phytochemistry 2002, 61, 573–578. DOI: 10.1016/S0031-9422(02)00284-4.
  • Singh, H.P.; Batish, R.D.; Kaur, S.; Arora, K.; Kohli, K. R. α-pinene inhibits growth and induces oxidative stress in roots. Ann. Bot. 2006, 98, 1261–1269. DOI: 10.1093/aob/mcl213.
  • Vasilakoglou, I.; Dhima, K.; Paschalidis, K.; Ritzoulis, C. Herbicidal potential on Lolium rigidum of nineteen major essential oil components and their synergy. J. Essent. Oils Res. 2013, 25, 1–10. DOI: 10.1080/10412905.2012.751054.
  • Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technol. 2008, 99, 8788–8795. DOI: 10.1016/j.biortech.2008.04.048.
  • Azirak, S.; Karaman, S. Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 51, 88–92. DOI: 10.1080/09064710701228353.
  • Verdeguer Sancho, M.; Rizza, C.; Salamone, A. Antimicrobial and herbicidal activity of eugenol, the main compound of Syzygium aromaticum (L.) Merr. et L.M. Perry essential oil. In Modern Fungicides and Antifungal Compounds; Dehne, H.W.; Deising, H.B.; Fraaije, B.; Gisi, U.; Hermann, D.; Mehl, A.; Oerke, E.C.; Russell, P.E.; Stammler, G.; Kuck, K.H.; Lyr, H. Eds.; Proceeding of 17th International Reinhardsbrunn Symposium, Friedrichroda, Germany; 2014; 221–222.
  • Leather, G.R.; Einhellig, F.A. Mechanisms of allelopathic action in bioassay. In The Chemistry of Allelopathy; Thomposon A.C., Ed.; American Chemical Society: Washington, DC, 1985; 197–205.
  • Chowhan, N.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Phytotoxic effects of β-pinene on early growth and associated biochemical changes in rice. Acta Physiol. Plant. 2011, 33, 2369–2376. DOI: 10.1007/s11738-011-0777-x.
  • Zhao, L.-J.; Yang, X.-N.; Li, X.-Y.; Mu, W.; Liu, F. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric. Sci. China 2011, 10, 728–736. DOI: 10.1016/S1671-2927(11)60056-4.
  • Bainard, L.D.; Isman, M.B.; Upadhyaya, M.K. Phytotoxicity of clove oil and its primary constituent eugenol and the role of leaf epicuticular wax in the susceptibility to these essential oils. Weed Sci. 2006, 54, 833–837. DOI: 10.1614/WS-06-039R.1.
  • Tworkoski, T. Herbicide effects of essential oils. Weed Sci. 2002, 50, 425–431.
  • Kaur, S.; Singh, H.P.; Mittal, S.; Batish, D.R.; Kohli, R.K. Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide. Ind. Crops Prod. 2010, 32, 54–61. DOI: 10.1016/j.indcrop.2010.03.007.
  • Poonpaiboonpipat, T.; Pangnakorn, U.; Suvunnamek, U.; Teerarak, M.; Charoenying, P.; Laosinwattana, C. Phytotoxic effects of essential oil from Cymbopogon citratus and its physiological mechanisms on barnyard grass (Echinochloa crus-galli). Ind. Crops Prod. 2013, 41, 403–407. DOI: 10.1016/j.indcrop.2012.04.057.
  • Uddin, M.R.; Park, S.U.; Dayan, F.E.; Pyon, J.Y. Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Manag. Sci. 2014, 70, 252–257. DOI: 10.1002/ps.3550.
  • Romagni, J.G.; Allen, S.N.; Dayan, F.E. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol. 2000, 26, 303–313.
  • Nishida, N.; Tamotsu, S.; Nagata, N.; Saito, C.; Sakai, A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol. 2005, 31, 1187–1203. DOI: 10.1007/s10886-005-4256-y.
  • Scrivanti, L.R.; Zunino, M.; Zygadlo, J.A. Tagetes minuta and Schinus areira essential oils as allelopathic agents. Biochem. Syst. Ecol. 2003, 31, 563–572. DOI: 10.1016/S0305-1978(02)00202-8.
  • Batish, D.R.; Setia, N.; Singh, H.P.; Kohli, R.K. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Protect 2004, 23, 1209–1214. DOI: 10.1016/j.cropro.2004.05.009.
  • Singh, H.P.; Kaur, S.; Mittal, S.; Batish, D.R.; Kohli, R.K. Essential oil of Artemisia scoparia inhibit plant growth by generating reactive oxygen species and causing oxidative damage. J. Chem. Ecol. 2009, 35, 154–162. DOI: 10.1007/s10886-009-9595-7.
  • Picman, A.K. Biological activities of sesquiterpenes. Biochem. Syst. Ecol. 1986, 14, 255–281. DOI: 10.1016/0305-1978(86)90101-8.
  • Pandey, D.K. Phytotoxicity of sesquiterpene lactone parthenin on aquatic weeds. J. Chem. Ecol. 1996, 22, 151–160. DOI: 10.1007/BF02040206.
  • Dayan, F.E.; Hernandez, A.; Allen, S.T.; Moraes, R.T.; Vroman, J.A.; Avery, M.A.; Duke, S.O. Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 1999, 50, 607–614. DOI: 10.1016/S0031-9422(98)00568-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.