Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 2
284
Views
3
CrossRef citations to date
0
Altmetric
Articles

In vitro assessment of corticosteroid effects of eight chiral herbicides

, , &

References

  • Yang, Y.; Ma, H.; Zhou, J.; Liu, J.; Liu, W. Joint Toxicity of Permethrin and Cypermethrin at Sublethal Concentrations to the Embryo-Larval Zebrafish. Chemosphere 2014, 96, 146–154. DOI: 10.1016/j.chemosphere.2013.10.014.
  • Ye, X.; Liu, L. Effects of Pyrethroid Insecticides on Hypothalamic-Pituitary-Gonadal Axis: A Reproductive Health Perspective. Environ. Pollut. 2019, 245, 590–599. DOI: 10.1016/j.envpol.2018.11.031.
  • Liu, J.; Yang, Y.; Yang, Y.; Zhang, Y.; Liu, W. Disrupting Effects of Bifenthrin on Ovulatory Gene Expression and Prostaglandin Synthesis in Rat Ovarian granulosa Cells. Toxicology 2011, 282, 47–55. DOI: 10.1016/j.tox.2011.01.007.
  • Liu, J.; Zhao, M.; Zhuang, S.; Yang, Y.; Yang, Y.; Liu, W. Low Concentrations of O,P'-DDT Inhibit Gene Expression and Prostaglandin Synthesis by Estrogen Receptor-Independent Mechanism in rat Ovarian Cells. PLoS One 2012, 7, e49916. DOI: 10.1371/journal.pone.0049916.
  • Cai, X.; Liu, W.; Sheng, G. Enantioselective Degradation and Ecotoxicity of the Chiral Herbicide Diclofop in Three Freshwater Alga Cultures. J. Agric. Food Chem. 2008, 56, 2139–2146. DOI: 10.1021/jf0728855.
  • Ye, J.; Zhao, M.; Liu, J.; Liu, W. Enantioselectivity in Environmental Risk Assessment of Modern Chiral Pesticides. Environ. Pollut. 2010, 158, 2371–2383. DOI: 10.1016/j.envpol.2010.03.014.
  • Wen, Y.; Yuan, Y.; Chen, H.; Xu, D.; Lin, K.; Liu, W. Effect of Chitosan on the Enantioselective Bioavailability of the Herbicide Dichlorprop to Chlorella pyrenoidosa. Environ. Sci. Technol. 2010, 44, 4981–4987. DOI: 10.1021/es100507p.
  • Liu, J.; Yang, Y.; Zhuang, S.; Yang, Y.; Li, F.; Liu, W. Enantioselective Endocrine-Disrupting Effects of Bifenthrin on Hormone Synthesis in Rat Ovarian Cells. Toxicology 2011, 290, 42–49. DOI: 10.1016/j.tox.2011.08.016.
  • Fenner, K.; Canonica, S.; Wackett, L. P.; Elsner, M. Evaluating Pesticide Degradation in the Environment: Blind Spots and Emerging Opportunities. Science 2013, 341, 752–758. DOI: 10.1126/science.1236281.
  • Xu, M.; Huang, H.; Li, N.; Li, F.; Wang, D.; Luo, Q. Occurrence and Ecological Risk of Pharmaceuticals and Personal Care Products (PPCPs) and Pesticides in Typical Surface Watersheds, China. Ecotoxicol. Environ. Saf. 2019, 175, 289–298. DOI: 10.1016/j.ecoenv.2019.01.131.
  • Environmental Protection Agency. Napropamide Reregistration Eligibility Decision; Notice of Availability. http://www.thefederalregister.com/2005/12/21/E5-7501.html (accessed Dec 21, 2005) (accessed Dec 21, 2005) http://www.thefederalregister.com/2005/12/21/E5-7501. htmlhttp://www.thefederalregister.com/2005/12/21/E5-7501.html
  • Xie, J.; Zhao, L.; Liu, K.; Guo, F.; Liu, W. Enantioselective Effects of Chiral Amide Herbicides Napropamide, Acetochlor and Propisochlor: The More Efficient R-Enantiomer and Its Environmental Friendly. Sci. Tot. Environ. 2018, 626, 860–866. DOI: 10.1016/j.scitotenv.2018.01.140.
  • Diao, J.; Xu, P.; Wang, P.; Lu, D.; Lu, Y.; Zhou, Z. Enantioselective Degradation in Sediment and Aquatic Toxicity to Daphnia Magna of the Herbicide Lactofen Enantiomers. J. Agric. Food Chem. 2010, 58, 2439–2445. DOI: 10.1021/jf9038327.
  • Xie, J.; Zhao, L.; Liu, K.; Guo, F.; Chen, Z.; Liu, W. Enantiomeric characterization of herbicide lactofen: enantioseparation, absolute configuration assignment and enantioselective activity and toxicity. Chemosphere 2018, 193, 351–357. DOI: 10.1016/j.chemosphere.2017.10.168.
  • Waite, D. T.; Cessna, A. J.; Grover, R.; Kerr, L. A.; Snihura, A. D. Environmental Concentrations of Agricultural Herbicides in Saskatchewan, Canada: Bromoxynil, Dicamba, Diclofop, MCPA, and Trifluralin. J. Environ. Qual. 2004, 33, 1616–1628. DOI: 10.2134/jeq2004.1616.
  • Qian, H. F.; Wang, R. Q.; Chen, J.; Ding, H. Y.; Yong, W.; Ruan, S. L.; Fu, Z. W. Analysis of Enantioselective Biochemical, Physiological, and Transcriptional Effects of the Chiral Herbicide Diclofop Methyl on Rice Seedlings. J. Agric. Food Chem. 2012, 60, 5515–5523. DOI: 10.1021/jf301688a.
  • Vogue, P. A. OSU Extension Pesticide Properties Database. http://npic.orst.edu/ingred/ppdmove.htm, 2013 (accessed Jul 24, 1994).
  • Almeida, M. B.; Madeira, T. B.; Watanabe, L. S.; Meletti, P. C.; Nixdorf, S. L. Pesticide Determination in Water Samples from a Rural Area by Multi-Target Method Applying Liquid Chromatography-Tandem Mass Spectrometry. J. Braz. Chem. Soc. 2019, 30, 1657–1666. DOI: 10.21577/0103-5053.20190066.
  • Xie, J.; Zhao, L.; Liu, K.; Guo, F.; Gao, L.; Liu, W. Activity, Toxicity, Molecular Docking, and Environmental Effects of Three Imidazolinone Herbicides Enantiomers. Sci. Tot. Environ. 2018, 622, 594–602. DOI: 10.1016/j.scitotenv.2017.11.333.
  • Ramezani, M. K.; Oliver, D. P.; Kookana, R. S.; Lao, W.; Gill, G.; Preston, C. Faster Degradation of Herbicidally-Active Enantiomer of Imidazolinones in Soils. Chemosphere 2010, 79, 1040–1045. DOI: 10.1016/j.chemosphere.2010.03.046.
  • Qian, H.; Lu, T.; Peng, X.; Han, X.; Fu, Z.; Liu, W. Enantioselective Phytotoxicity of the Herbicide Imazethapyr on the Response of the Antioxidant System and Starch Metabolism in Arabidopsis thaliana. PLoS One 2011, 6, e19451. DOI: 10.1371/journal.pone.0019451.
  • Qian, H.; Lu, H.; Ding, H.; Lavoie, M.; Li, Y.; Liu, W.; Fu, Z. Analyzing Arabidopsis thaliana Root Proteome Provides Insights into the Molecular Bases of Enantioselective Imazethapyr Toxicity. Sci. Rep. 2015, 5, 11975. DOI: 10.1038/srep11975.
  • Zhou, Q-Y.; Zhang, C.; Chai, R-S.; Zhang, Y-S.; Liu, W-P. Progress of Research on Chiral Herbicides. Chin. J. Pest. Sci. 2010, 12, 109–118.
  • Wei, J.; Zhang, X.; Li, X.; Zeng, D.; Tan, H. Enantioselective Phytotoxicity of Imazamox Against Maize Seedlings. Bull. Environ. Contam. Toxicol. 2016, 96, 242–247.
  • Wang, L.; Liu, W.; Yang, C.; Pan, Z.; Gan, J.; Xu, C.; Zhao, M.; Schlenk, D. Enantioselectivity in Estrogenic Potential and Uptake of Bifenthrin. Environ. Sci. Technol. 2007, 41, 6124–6128. DOI: 10.1021/es070220d.
  • Zhao, M.; Zhang, Y.; Zhuang, S.; Zhang, Q.; Lu, C.; Liu, W. Disruption of the Hormonal Network and the Enantioselectivity of Bifenthrin in Trophoblast: Maternal-fetal Health Risk of Chiral Pesticides. Environ. Sci. Technol. 2014, 48, 8109–8116. DOI: 10.1021/es501903b.
  • Zhang, J.; Zhang, J.; Liu, R.; Gan, J.; Liu, J.; Liu, W. Endocrine-Disrupting Effects of Pesticides Through Interference with Human Glucocorticoid Receptor. Environ. Sci. Technol. 2016, 50, 435–443. DOI: 10.1021/acs.est.5b03731.
  • Zhang, J.; Huang, X.; Liu, H.; Liu, W.; Liu, J. Novel Pathways of Endocrine Disruption Through Pesticides Interference with Human Mineralocorticoid Receptors. Toxicol. Sci. 2018, 162, 53–63. DOI: 10.1093/toxsci/kfx244.
  • Cole, T. J.; Blendy, J. A.; Monaghan, A. P.; Krieglstein, K.; Schmid, W.; Aguzzi, A.; Fantuzzi, G.; Hummler, E.; Unsicker, K.; Schutz, G. Targeted Disruption of the Glucocorticoid Receptor Gene Blocks Adrenergic Chromaffin Cell-Development and Severely Retards Lung Maturation. Genes Dev. 1995, 9, 1608–1621. DOI: 10.1101/gad.9.13.1608.
  • Chourbaji, S.; Gass, P. Glucocorticoid Receptor Transgenic Mice as Models for Depression. Brain Res. Rev. 2008, 57, 554–560. DOI: 10.1016/j.brainresrev.2007.04.008.
  • Davani, B.; Portwood, N.; Bryzgalova, G.; Reimer, M. K.; Heiden, T.; Ostenson, C. G.; Okret, S.; Ahren, B.; Efendic, S.; Khan, A. Aged Transgenic Mice with Increased Glucocorticoid Sensitivity in Pancreatic Beta-Cells Develop Diabetes. Diabetes 2004, 53, S51–S59.
  • Bauersachs, J.; Jaisser, F.; Toto, R. Mineralocorticoid Receptor Activation and Mineralocorticoid Receptor Antagonist Treatment in Cardiac and Renal Diseases. Hypertension 2015, 65, 257–U42. DOI: 10.1161/HYPERTENSIONAHA.114.04488.
  • Nicolaides, N. C.; Roberts, M. L.; Kino, T.; Braatvedt, G.; Hurt, D. E.; Katsantoni, E.; Sertedaki, A.; Chrousos, G. P.; Charmandari, E. A Novel Point Mutation of the Human Glucocorticoid Receptor Gene Causes Primary Generalized Glucocorticoid Resistance Through Impaired Interaction with the LXXLL Motif of the p160 Coactivators: Dissociation of the Transactivating and Transreppressive Activities. J. Clin. Endocrinol. Metab. 2014, 99, E902–E907. DOI: 10.1210/jc.2013-3005.
  • Grossmann, C.; Husse, B.; Mildenberger, S.; Schreier, B.; Schuman, K.; Gekle, M. Colocalization of Mineralocorticoid and EGF Receptor at the Plasma Membrane. Biochim. Biophys. Acta 2010, 1803, 584–590. DOI: 10.1016/j.bbamcr.2010.02.008.
  • Zhang, Q.; Ye, J.; Chen, J.; Xu, H.; Wang, C.; Zhao, M. Risk Assessment of Polychlorinated Biphenyls and Heavy Metals in Soils of an Abandoned e-Waste Site in China. Environ. Pollut. 2014, 185, 258–265. DOI: 10.1016/j.envpol.2013.11.003.
  • Zhang, J.; Yang, Y.; Liu, W.; Liu, J. Potential Endocrine-Disrupting Effects of Metals Via Interference with Glucocorticoid and Mineralocorticoid Receptors. Environ. Pollut. 2018, 242, 12–18. DOI: 10.1016/j.envpol.2018.06.056.
  • Zhang, J.; Liu, R.; Niu, L.; Zhu, S.; Zhang, Q.; Zhao, M.; Liu, W.; Liu, J. Determination of Endocrine-Disrupting Potencies of Agricultural Soils in China via a Battery of Steroid Receptor Bioassays. Environ. Pollut. 2018, 234, 846–854. DOI: 10.1016/j.envpol.2017.12.004.
  • Yang, T.; Zhang, H.-L.; Liang, Q.; Shi, Y.; Mei, Y.-A.; Barrett, P. Q.; Hu, C. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells. Hypertension 2016, 68, 785. +. DOI: 10.1161/HYPERTENSIONAHA.116.07094.
  • Liu, Y.; Zhang, X.; Liu, C. H.; Yang, R. L.; Xu, Z. L.; Zhou, L. J.; Sun, Y. M.; Lei, H. T. Enantioselective and Synergetic Toxicity of Axial Chiral Herbicide Propisochlor to SP2/0 Myeloma Cells. J. Agric. Food Chem. 2015, 63, 7914–7920. DOI: 10.1021/acs.jafc.5b03027.
  • Ye, J.; Wang, L.; Zhang, Z.; Liu, W. Enantioselective Physiological Effects of the Herbicide Diclofop on Cyanobacteriurn Microcystis aeruginosa. Environ. Sci. Technol. 2013, 47, 3893–3901. DOI: 10.1021/es304593c.
  • Zhang, Q.; Zhao, M.; Qian, H.; Lu, T.; Zhang, Q.; Liu, W. Enantioselective Damage of Diclofop Acid Mediated by Oxidative Stress and Acetyl-CoA Carboxylase in Nontarget Plant Arabidopsis thaliana. Environ. Sci. Technol. 2012, 46, 8405–8412. DOI: 10.1021/es300049q.
  • Xie, J.; Zhao, L.; Liu, K.; Liu, W. Enantiomeric Environmental Behavior, Oxidative Stress and Toxin Release of Harmful Cyanobacteria Microcystis aeruginosa in Response to Napropamide and Acetochlor. Environmental Pollution 2019, 246, 728–733. DOI: 10.1016/j.envpol.2018.12.056.
  • Xie, J.; Chu, M.; Zhao, L.; Liu, K.; Liu, W. Enantiomeric Impacts of Two Amide Chiral Herbicides on Echinochloa Crus-Galli Physiology and Gene Transcription. Sci. Tot. Environ. 2019, 656, 1365–1372. DOI: 10.1016/j.scitotenv.2018.11.355.
  • Xu, C.; Tu, W. Q.; Deng, M.; Jin, Y. X.; Lu, B.; Zhang, C. N.; Lin, C. M. A.; Wu, Y. M.; Liu, W. P. Stereoselective Induction of Developmental Toxicity and Immunotoxicity by Acetochlor in the Early Life Stage of Zebrafish. Chemosphere 2016, 164, 618–626. DOI: 10.1016/j.chemosphere.2016.09.004.
  • Wang, F.; Gao, J.; Chen, L.; Zhou, Z.; Liu, D.; Wang, P. Enantioselective Bioaccumulation and Metabolism of Lactofen in Zebrafish Danio rerio and Combined Effects with its Metabolites. Chemosphere 2018, 213, 443–452. DOI: 10.1016/j.chemosphere.2018.09.052.
  • Wang, F.; Yi, X.; Qu, H.; Chen, L.; Liu, D.; Wang, P.; Zhou, Z. Enantioselective Accumulation, Metabolism and Phytoremediation of Lactofen by Aquatic Macrophyte Lemna Minor. Ecotoxicol. Environ. Saf. 2017, 143, 186–192. DOI: 10.1016/j.ecoenv.2017.04.051.
  • Wang, F.; Liu, D.; Qu, H.; Chen, L.; Zhou, Z.; Wang, P. A full Evaluation for the Enantiomeric Impacts of Lactofen and Its Metabolites on Aquatic Macrophyte Lemna Minor. Water Res. 2016, 101, 55–63. DOI: 10.1016/j.watres.2016.05.064.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.