Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 2
272
Views
7
CrossRef citations to date
0
Altmetric
Articles

Biopesticide and formulation processes based on starch industrial wastewater fortified with soybean medium

, , &

References

  • Blais, J. R. Trends in the Frequency, Extent, and Severity of Spruce Budworm Outbreaks in Eastern. Can. J. For. Res. 1983, 13, 539.
  • Dymond, C. C.; Neilson, E. T.; Stinson, G.; Porter, K.; MacLean, D. A.; Gray, D. R.; Campagna, M.; Kurz, W. A. Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests. Ecosystems 2010, 13, 917–931. DOI: 10.1007/s10021-010-9364-z.
  • Carrow, J. R. Bacillus thuringiensis and the Spruce Budworm. New Brunswick Department of Natural Resources: Fredericton, NB, 1983.
  • Van Frankenhuyzen, K.; Lucarotti, C.; Lavallée, R. Canadian Contributions to Forest Insect Pathology and to the Ise of Pathogens in Forest Pest Management. Can. Entomol. 2016, 148, S210–S238. DOI: 10.4039/tce.2015.20.
  • Vu, D.; Tyagi, R. D.; Brar, S. K.; Valéro, J. R.; Surampalli, R. Y. Starch Industry Wastewater for Production of Biopesticides–Ramifications of Solids Concentrations. Environ. Technol. 2009, 30, 393–405. DOI: 10.1080/09593330902753495.
  • Ndao, A.; Sellamuthu, B.; Gnepe, J. R.; Tyagi, R. D.; Valero, J. R. Pilot-scale Biopesticide Production by Bacillus thuringiensis subsp. kurstaki Using Starch Industry Wastewater as Raw Material. J. Environ. Sci. Health B 2017, 52, 623–630. DOI: 10.1080/03601234.2017.1330071.
  • De Maagd, R. A.; Bravo, A.; Crickmore, N. How Bacillus thuringiensis Has Evolved Specific Toxins to Colonize the Insect World. Trends. Genet. 2001, 17, 193–199. DOI: 10.1016/S0168-9525(01)02237-5.
  • Bravo, A.; Gill, S. S.; Soberon, M. Mode of Action of Bacillus thuringiensis Cry and Cyt Toxins and Their Potential for Insect Control. Toxicon 2007, 49, 423–435. DOI: 10.1016/j.toxicon.2006.11.022.
  • Zhang, X.; Yan, S.; Tyagi, R. D.; Surampalli, R.; Valéro, J. R. Wastewater Sludge As Raw Material for Microbial Oils Production. Appl. Energy 2014, 135, 192–201. DOI: 10.1016/j.apenergy.2014.08.078.
  • Yezza, A.; Tyagi, R. D.; Valero, J. R.; Surampalli, R. Y. Bioconversion of Industrial Wastewater and Wastewater Sludge Into Bacillus thuringiensis Based Biopesticides in Pilot Fermentor. Bioresour. Technol. 2006, 97, 1850–1857. DOI: 10.1016/j.biortech.2005.08.023.
  • Schnepf, E.; Crickmore, N.; Van Rie, J.; Lereclus, D.; Baum, J.; Feitelson, J.; Zeigler, D. R.; Dean, D. H. Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol. Mol. Biol. Rev. 1998, 62, 775–806.
  • Zouari, N.; Jaoua, S. The Effect of Complex Carbon and Nitrogen, Salt, Tween-80 and Acetate on Delta-endotoxin Production by a Bacillus thuringiensis subsp kurstaki. J. Ind. Microbiol. Biotechnol. 1999, 23, 497–502. DOI: 10.1038/sj.jim.2900756.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1006/abio.1976.9999.
  • Brar, S. K.; Verma, M.; Tyagi, R. D.; Valéro, J. R.; Surampalli, R. Y. Screening of Different Adjuvants for Wastewater/wastewater Sludge-based Bacillus thuringiensis Formulations. J. Econ. Entomol. 2006, 99, 1065–1079. DOI: 10.1093/jee/99.4.1065.
  • Bauce, É.; Carisey, N.; Dupont, A.; Van Frankenhuyzen, K. Bacillus thuringiensis subsp. kurstaki Aerial Spray Prescriptions for Balsam Fir Stand Protection Against Spruce Budworm (Lepidoptera: Tortricidae). J. Econ. Entomol. 2004, 97, 1624–1634. DOI: 10.1603/0022-0493-97.5.1624.
  • Gnepe, J. R.; Tyagi, R. D.; Brar, S. K.; Valéro, J. R.; Surampalli, R. Y. Corrosion and Stability Study of Bacillus thuringiensis var. kurstaki Starch Industry Wastewater-Derived Biopesticide Formulation. J. Environ. Sci. Health B 2014, 49, 889–896. DOI: 10.1080/03601234.2014.938561.
  • Guimaraes, C. M.; GIao, M. S.; Martinez, S. S.; Pintado, A. I.; Pintado, M. E.; Bento, L. S.; Malcata, F. X. Antioxidant Activity of Sugar Molasses, Including Protective Effect Against DNA Oxidative Damage. J. Food Sci. 2007, 72, 39–43.
  • Hadapad, A. B.; Hire, R. S.; Vijayalakshmi, N.; Dongre, T. K. UV Protectants for the Biopesticide Based on Bacillus Sphaericus Neide and Their Role in Protecting the Binary Toxins from UV Radiation. J. Invertebr. Pathol. 2009, 100, 147–152. DOI: 10.1016/j.jip.2008.12.003.
  • Smirnoff, W. A.; Valéro, J. R. Characteristics of a Highly Concentrated Bacillus thuringiensis Formulation Against Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Entomol. 1983, 115, 443–444. DOI: 10.4039/Ent115443-4.
  • Pazhang, M.; Mehrnejad, F.; Pazhang, Y.; Falahati, H.; Chaparzadeh, N. Effect of Sorbitol and Glycerol on the Stability of Trypsin and Difference Between Their Stabilization Effects in the Various Solvents. Biotechnol. Appl. Biochem. 2016, 63, 206–213. DOI: 10.1002/bab.1366.
  • Smirnoff, W. A.; Juneau, A. Physical Analysis of the Dispersion of Bacillus thuringiensis [bacterial insecticide] Against Spruce Budworm. Environnement Canada, Service canadien des forêts, Centre de recherches forestières des Laurentides, Sainte-Foy (Québec). Rapport d'information LAU-X-55, 1982, 18 p.
  • Dulmage, H. T.; Boening, O. P.; Rehnborg, C. S.; Hansen, G. D. A Proposed Standardized Bioassay for Formulations of Bacillus thuringiensis Based on the International Unit. J. Invertebr. Pathol. 1971, 18, 240–245. DOI: 10.1016/0022-2011(71)90151-0.
  • Mazmira, M. M.; Ramlah, S. A. A.; Rosfarizan, M.; Ling, T. C.; Arliff, A. B. Effect of Saccharides on Growth, Sporulation Rate and δ-endotoxin Synthesis of Bacillus thuringiensis. Afr. J. Biotechnol. 2012, 11, 9654–9663.
  • Brar, S. K.; Verma, M.; Tyagi, R. D.; Valéro, J. R.; Surampalli, R. Y. Efficient Centrifugal Recovery of Bacillus thuringiensis Biopesticides from Fermented Wastewater and Wastewater Sludge. Water. Res. 2006, 40, 1310–1320. DOI: 10.1016/j.watres.2006.01.028.
  • Liu, C. M.; Tzeng, Y. M. Characterization Study of the Sporulation Kinetics of Bacillus thuringiensis. Biotechnol. Bioeng. 2000, 68, 11–17. DOI: 10.1002/(SICI)1097-0290(20000405)68:1<11::AID-BIT2>3.0.CO;2-T.
  • Rowe, G. E.; Margaritis, A. Bioprocess Design and Economic Analysis for the Commercial Production of Environmentally Friendly Bioinsecticides from Bacillus thuringiensis HD‐1 kurstaki. Biotechnol. Bioeng. 2004, 86, 377–388. DOI: 10.1002/bit.20146.
  • Ben Khedher, S.; Jaoua, S.; Zouari, N. Overcome of Carbon Catabolite Repression of Bioinsecticides Production by Sporeless Bacillus thuringiensis Through Adequate Fermentation Technology. Biotechnol. Res. Int. 2014, 2014, 1. DOI: 10.1155/2014/698587.
  • Ghribi, D.; Abdelkefi-Mesrati, L.; Mnif, I.; Kammoun, R.; Ayadi, I.; Saadaoui, I.; Chaabouni-Ellouze, S. Investigation of Antimicrobial Activity and Statistical Optimization of Bacillus subtilis SPB1 Biosurfactant Production in Solid-state Fermentation. Biomed. Res. Int. 2012, 2012, 1–12 DOI: 10.1155/2012/373682.
  • Dharmsthiti, S. C.; Pantuwatana, S.; Bhumiratana, A. Production of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus strain 1593 on media using a byproduct from a monosodium glutamate factory. J. Invertebr. Pathol. 1985, 46, 231–238. DOI: 10.1016/0022-2011(85)90063-1.
  • Kanjanamaneesathian, M. Bacillus for Rice Cultivation in Thailand. Beneficial Microorganisms in Agriculture, Aquaculture and Other Areas. Springer: Cham, 2015; 81–100.
  • Gale, E. F.; Shirley Taylor, E. The Assimilation of Amino-acids by Bacteria: 2. The Action of Tyrocidin and Some Detergent Substances in Releasing Amino-Acids from the Internal Environment of Streptococcus faecalis. Microbiol 1947, 1(1), 77–84. DOI: 10.1099/00221287-1-1-77.
  • Conde, A.; Diallinas, G.; Chaumont, F.; Chaves, M.; Gerós, H. Transporters, Channels, or Simple Diffusion? Dogmas, Atypical Roles and Complexity in Transport Systems. Int. J. Biochem. Cell Biol. 2010, 42, 857–868. DOI: 10.1016/j.biocel.2009.12.012.
  • Smirnoff, W. A. Effects of Volatile Substances Released by Foliage of Abies balsamea. J. Invertebr. Pathol. 1972, 19, 32–35.
  • Ferry, N.; Edwards, M. G.; Gatehouse, J. A.; Gatehouse, A. M. R. Plant-insect Interactions: Molecular Approaches to Insect Resistance. Curr. Opin. Biotechnol. 2004, 15, 155–161. DOI: 10.1016/j.copbio.2004.01.008.
  • Salama, H. S.; Morris, O. N. The Use of Bacillus thuringiensis in Developing Countries. In Entwistle, P.F., Cory, J.S., Bailey, M.I., and Higgs, S., Eds.; Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice. John Wiley & Sons: Chichester, 1993; pp 237–253.
  • Aranda, E.; Lorence, A.; Trejo del Refugio, M. Rural Production of Bacillus thuringiensis by Solid State Fermentation. In Charles, J.-F., Delecluse, A., Nielsen-LeRoux, C., Eds.; Entomopathogenic Bacteria: From Laboratory to Field Application. Kluwer Academic Publishers: Dordrecht, 2013; pp 317–332
  • Hilz, E.; Arnoldus, V. W. P. Spray Drift Review: The Extent to Which a Formulation can Contribute to Spray Drift Reduction. Crop. Prot. 2013, 44, 75–83. DOI: 10.1016/j.cropro.2012.10.020.
  • Harrison, G. M.; Mun, R.; Cooper, G.; Boger, D. V. A Note on the Effect of Polymer Rigidity and Concentration on Spray Atomisation. J. Nonnewton. Fluid. Mech. 1999, 85, 93–104. DOI: 10.1016/S0377-0257(98)00188-8.
  • Dobson, H.; William, K. Pesticide Application: Mastering and Monitoring. In Grant, I.F., Tingle, C.C.D., Eds.; Ecological Monitoring Methods for the Assessment of Pesticide Impact in the Tropics. Natural Resources Institute: Chatham, UK, 2002; pp 1–20.
  • Adjallé, K. D.; Vu, K. D.; Tyagi, R. D.; Brar, S. K.; Valéro, J. R.; Surampalli, R. Y. Optimization of Spray Drying Process for Bacillus thuringiensis Fermented Wastewater and Wastewater Sludge. Bioprocess Biosyst. Eng. 2011, 34, 237–246. DOI: 10.1007/s00449-010-0466-y.
  • Broderick, N. A.; Goodman, R. M.; Raffa, K. F.; Handelsman, J. Synergy between Zwittermicin a and Bacillus thuringiensis subsp. kurstaki against Gypsy Moth (Lepidoptera: Lymantriidae). Environ. Entomol. 2000, 29, 101–107. DOI: 10.1603/0046-225X-29.1.101.
  • Barnabé, S.; Brar, S. K.; Tyagi, R. D.; Beauchesne, I.; Surampalli, R. Y. Pre-treatment and Bioconversion of Wastewater Sludge to Value-added Products—Fate of Endocrine Disrupting Compounds. Sci. Total Environ. 2009, 407, 1471–1488. DOI: 10.1016/j.scitotenv.2008.11.015.
  • Valero, J. R. Microbiologie Contre Tordeuse, Recherches à Forêt-Canada, Région du Québec. L'Aubelle 1990, 81, 12–15.
  • Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W. A.; et al. A Global Model of Natural Volatile Organic Compound Emissions. J. Geophys. Res. 1995, 100, 8873–8892. DOI: 10.1029/94JD02950.
  • Ehn, M.; Thornton, J. A.; Kleist, E.; Sipilä, M.; Junninen, H.; Pullinen, I.; Springer, M.; Rubach, F.; Tillmann, R.; Lee, B.; et al. A Large Source of Low-volatility Secondary Organic Aerosol. Nature 2014, 506, 476.
  • Isidorov, V. A.; Zenkevich, I. G.; Ioffe, B. V. Volatile Organic Compounds in the Atmosphere of Forests. Atmos. Environ. 1967, 19(1), 1–8. DOI: 10.1016/0004-6981(85)90131-3.
  • Xu Barringer, Y. S.; Alvarez, V. Cause and Prevention of Cane Molasses Gelling. J. Food. Sci. 2005, 70, C461–C464. DOI: 10.1111/j.1365-2621.2005.tb11501.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.