Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 54, 2019 - Issue 9
284
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the effect of different treatment methods on sugarcane vinasse remediation

, , , &

References

  • Brazilian Institute of Geography and Statistics (BIGS). Automatic Recovery System - SIDRA. Brasilia. https://sidra.ibge.gov.br (accessed Nov 20, 2018). 2018. (In Portuguese).
  • Dematte, J. A. M.; Gama, M. A. P.; Cooper, M.; Araujo, J. C.; Nanni, M. R.; Fiorio, P. R. Effect of Fermentation Residue on the Spectral Reflectance Properties of Soils. Geoderma 2004, 120, 187–200. DOI: 10.1016/j.geoderma.2003.08.016.
  • Seixas, F. L.; Gimenes, M. L.; Fernandes-Machado, N. R. C. Management Effects on Nitrogen Recovery in a Sugarcane Crop Grown in Brazil. Geoderma 2003, 116, 235–248.
  • Guerreiro, L. F.; Rodrigues, C. S. D.; Duda, R. M.; Oliveira, R. A.; Boaventura, R. A. R.; Madeira, L. M. Treatment of Sugarcane Vinasse by Combination of Coagulation/Flocculation and Fenton’s Oxidation. J. Environ. Manage. 2016, 181, 237–248. DOI: 10.1016/j.jenvman.2016.06.027.
  • Christofoletti, C. A.; Escher, J. P.; Correia, J. E.; Marinho, J. F. U.; Fontanetti, C. S. Sugarcane Vinasse: Environmental Implications of Its Use. Waste Manage. 2013, 33, 2752–2761. DOI: 10.1016/j.wasman.2013.09.005.
  • Wilkins, M. R.; Singh, V.; Belyea, R. L.; Buriak, P.; Wallig, M. A.; Tumbleson, M. E.; Rausch, K. D. Effect of pH on Fouling Characteristics and Deposit Compositions in Dry-Grind Thin Stillage. Cereal Chem. 2006, 83, 311–314. DOI: 10.1094/CC-83-0311.
  • Ferraz Junior, A. D. N.; Koyama, M. H.; Araujo Junior, M. M.; Zaiat, M. Thermophilic Anaerobic Digestion of Raw Sugarcane Vinasse. Renew. Energy 2016, 89, 245–252. DOI: 10.1016/j.renene.2015.11.064.
  • Ferreira, L. F. R.; Aguiar, M. M.; Messias, T. G.; Pompeu, G. B.; Lopez, A. M. Q.; Silva, D. P.; Monteiro, R. T. Evaluation of Sugar-Cane Vinasse Treated with Pleurotus Sajor-Caju Utilizing Aquatic Organisms as Toxicological Indicators. Ecotox. Environ. Saf. 2011, 74, 132–137. DOI: 10.1016/j.ecoenv.2010.08.042.
  • Waliszewski, K. N.; Romero, A.; Pardio, V. T. Use of Cane Condensed Molasses Solubles in Feeding Broilers. Anim. Feed Sci. Technol. 1997, 67, 253–258. DOI: 10.1016/S0377-8401(97)00004-7.
  • Kannan, A.; Upreti, R. K. Influence of Distillery Effluent on Germination and Growth of Mung Bean (Vigna Radiata) Seeds. J. Hazard. Mater. 2008, 153, 609–615. DOI: 10.1016/j.jhazmat.2007.09.004.
  • Oliveira, B. G.; Carvalho, J. L. N.; Cerri, C. E. P.; Cerri, C. C.; Feigl, B. J. Soil Greenhouse Gas Fluxes from Vinasse Application in Brazilian Sugarcane Areas. Geoderma 2013, 200, 77–84.
  • Navarro, A. R.; Sepulveda, M. C.; Rubio, M. C. Bio-Concentration of Vinasse from the Alcoholic Fermentation of Sugar Cane Molasses. Waste Manage. 2000, 20, 581–585. DOI: 10.1016/S0956-053X(00)00026-X.
  • Milonjić, S. K.; Ruvarac, A. L.; Šušić, M. V. The Heat of Immersion of Natural Magnetite in Aqueous Solutions. Thermochim. Acta 1975, 11, 261–266. DOI: 10.1016/0040-6031(75)85095-7.
  • Moraes, B. S.; Zaiat, M.; Bonomi, A. Anaerobic Digestion of Vinasse from Sugarcane Ethanol Production in Brazil: Challenges and Perspectives. J. Renew. Sustain. Energy 2015, 44, 888–903. DOI: 10.1016/j.rser.2015.01.023.
  • Espanã-Gamboa, E.; Mijangos-Cortes, J.; Barahona-Perez, L.; Dominguez-Maldonado, J.; Hernández-Zarate, G.; Alzate-Gaviria, L. Vinasses: Characterization and Treatments. Waste Manage. Res. 2011, 29, 1235–1250. DOI: 10.1177/0734242X10387313.
  • Souza, R. P.; Girardi, F.; Santana, V. S.; Fernandes-Machado, N. R. C.; Gimenes, M. L. Photodegradation of Sugarcane Vinasse: Evaluation of the Effect of Vinasse Pre-Treatment and the Crystalline Phase of TiO2. Acta Sci. Technol. 2013, 35, 89–95.
  • Ferraz Júnior, A. D. N.; Etchebehere, C.; Zaiat, M. High Organic Loading Rate on Thermophilic Hydrogen Production and Metagenomic Study at an Anaerobic Packed-Bed Reactor Treating a Residual Liquid Stream of a Brazilian Biorefinery. Bioresour. Technol. 2015, 186, 81–88. DOI: 10.1016/j.biortech.2015.03.035.
  • Zayas, T.; Rómero, V.; Salgado, L.; Meraz, M.; Morales, U. Applicability of Coagulation/Flocculation and Electrochemical Processes to the Purification of Biologically Treated Vinasse Effluent. Sep. Purif. Technol. 2007, 57, 270–276. DOI: 10.1016/j.seppur.2007.04.019.
  • Rosa, A. P.; Conesa, J. A.; Fullana, A.; Melo, G. C. B.; Borges, J. M.; Chernicharo, C. A. L. Energy Potential and Alternative Usages of Biogas and Sludge from UASB Reactors: Case Study of the Laboreaux Wastewater Treatment Plant. Water Sci. Technol. 2016, 73, 1680–1690. DOI: 10.2166/wst.2015.643.
  • Ferreira, A.; Fagnani, K. C.; Alves, H. J.; Colpini, L. M. S.; Kunh, S. S.; Nastri, S.; Conserva, L. R. S.; Melchiades, F. G. Effect of Incorporating Sludge from Poultry Slaughterhouse Wastewater Treatment System in Ceramic Mass for Tile Production. Environ. Technol. Innov. 2018, 9, 294–302. DOI: 10.1016/j.eti.2017.11.010.
  • Andrade, T. C. G. R.; Barros, N. F.; Dias, L. E.; Azevedo, M. I. R. Biomass Yield and Calorific Value of Six Clonal Stands of Eucalyptus urophylla Cultivated in Northeastern brazil. Cerne 2013, 19, 467–472. DOI: 10.1590/S0104-77602013000300014.
  • Chen, L.; Chen, N.; Wu, H.; Li, W.; Fang, Z.; Xu, Z.; Qian, X. Flexible Design of Carbon Nanotubes Grown on Carbon Nanofibers by PECVD for Enhanced Cr (VI) Adsorption Capacity. Sep. Purif. Technol. 2018, 207, 406–415. DOI: 10.1016/j.seppur.2018.06.065.
  • Seixas, F. L.; Gimenes, M. L.; Fernandes-Machado, N. R. C. Treatment of Vinasse by Adsorption on Carbon from Sugar Cane Bagasse. Qim. Nova 2016, 39, 172–179. (In Portuguese).
  • Lima, H. H. S. Physical-Chemical Treatment of Vinasse by Coagulation and Adsorption in Activated Carbon of Sugarcane Bagasse. Dissertation, Master’s in Urban and Environmental Engineering, Federal University of Paraiba, Paraiba, Brazil. 2013. (In Portuguese).
  • Chen, W. S.; Hsu, H. J.; Kumar, G.; Budzianowski, W. M.; Ong, H. C. Predictions of Biochar Production and Torrefaction Performance from Sugarcane Bagasse Using Interpolation and Regression Analysis. Bioresour. Technol. 2017, 246, 12–19. DOI: 10.1016/j.biortech.2017.07.184.
  • Haddad, M. E.; Mamouni, R.; Saffaj, N.; Lazar, S. Removal of a Cationic Dye – Basic Red 12 – From Aqueous Solution by Adsorption onto Animal Bone Meal. J. Assoc. Arab. Univ. Basic. Appl. Sci. 2012, 12, 48–54. DOI: 10.1016/j.jaubas.2012.04.003.
  • Gulicovski, J. J.; Čerović, L. S.; Milonjić, S. K. Point of Zero Charge and Isoelectric Point of Alumina. Mater. Manuf. Process. 2008, 23, 615–619. DOI: 10.1080/10426910802160668.
  • Vilar, D. S.; Carvalho, G. O.; Pupo, M. M. S.; Aguiar, M. M.; Torres, N. H.; Américo, J. H. P.; Cavalcanti, E. B.; Eguiluz, K. I. B.; Salazar-Banda, G. R.; Leite, M. S.; Ferreira, L. F. R. Vinasse Degradation Using Pleurotus Sajor-Caju in a Combined Biological – Electrochemical Oxidation Treatment. Sep. Purif. Technol. 2018, 192, 287–286. DOI: 10.1016/j.seppur.2017.10.017.
  • Gao, S.; Wang, D.; Zhang, P.; Guo, X.; Zhang, X. Effects of Process Conditions on the Structure and Optical Properties of Zn/Fe/Sn/Sb-TiO2 Three Dimensional Particle-Electrodes. Optik 2016, 127, 6519–6524. DOI: 10.1016/j.ijleo.2016.04.133.
  • JCPDS, International Centre for Diffraction Data, PCPDFWIN, 1997.
  • Hwang, K. J.; Lee, J. W.; Shim, W. G.; Jang, H. D.; Lee, S.; Yoo, S. J. Adsorption and Photocatalysis of Nanocrystalline TiO2 Particles Prepared by Sol–Gel Method for Methylene Blue Degradation. Adv. Powder Technol. 2012, 23, 414–418. DOI: 10.1016/j.apt.2011.05.010.
  • Deng, J.; Wang, M.; Fang, J.; Song, X.; Yang, Z.; Yuan, Z. Synthesis of Zn-Dopes TiO2 Nano-Particles Using Metal Ti and Zn as Raw Materials and Application in Quantum Dot Sensitized Solar Cells. J. Alloy Compd. 2019, 791, 371–379. DOI: 10.1016/j.jallcom.2019.03.306.
  • Lassoued, M. S.; Lassoued, A.; Abdelbaky, M. S. M. S.; Ammar, A.; Gadri, A.; Salah, B. S.; García-Granda, S. Influence of Iron Doping on the Photocatalytic Activity of Nanocrystalline TiO2 Particles Fabricated by Ultrasound Method for Enhanced Degradation of Organic Dye. J. Mater. Sci. Mater. Electron. 2018, 29, 6019–6031. DOI: 10.1007/s10854-018-8576-4.
  • Yan, S.; Yu, Y.; Gu, Y.; Liu, Y.; Cao, Y. Improved Photocatalytic Activity of TiO2 Modified with Unique O-Zn-Cl Surface Species. Sep. Purif. Technol. 2016, 171, 118–122. DOI: 10.1016/j.seppur.2016.07.022.
  • Nair, R. G.; Mazumdar, S.; Modak, B.; Bapat, R.; Ayyub, P.; Bhattacharyya, K. The Role of Surface O-Vacancies in the Photocatalytic Oxidation of Methylene Blue by Zn-Doped TiO2: A Mechanistic Approach. J. Photochem. Photobiol. A 2017, 345, 36–53. DOI: 10.1016/j.jphotochem.2017.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.