Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 55, 2020 - Issue 3
711
Views
24
CrossRef citations to date
0
Altmetric
Articles

Contamination of antibiotic resistance genes (ARGs) in a typical marine aquaculture farm: source tracking of ARGs in reared aquatic organisms

, , , , , , & show all

References

  • Collignon, P.; Wegener, H. C.; Braam, P.; Butler, C. D. The Routine Use of Antibiotics to Promote Animal Growth Does Little to Benefit Protein under Nutrition in the Developing World. Clin. Infect. Dis. 2005, 47, 1007–1013. DOI: 10.1086/433191.
  • Van Boeckel, T. P.; Brower, C.; Gilbert, M.; Grenfell, B. T.; Levin, S. A.; Robinson, T. P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA. 2015, 112, 5649–5654. DOI: 10.1073/pnas.1503141112.
  • Pruden, A.; Pei, R. T.; Storteboom, H.; Carlson, K. H. Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environ. Sci. Technol. 2006, 40, 7445–7450. DOI: 10.1021/es060413l.
  • WHO. Antimicrobial Resistance: Global Report on Surveillance. Australasian Med. J. 2014, 7, 695–704.
  • Zhu, Y. G.; Johnson, T. A.; Su, J. Q.; Qiao, M.; Guo, G. X.; Stedtfeld, R. D.; Hashsham, S. A.; Tiedje, J. M. Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proc. Natl. Acad. Sci. USA. 2013, 110, 3435–3440. DOI: 10.1073/pnas.1222743110.
  • LaPara, T. M.; Burch, T. R.; McNamara, P. J.; Tan, D. T.; Yan, M.; Eichmiller, J. J. Tertiary-Treated Municipal Wastewater Is a Significant Point Source of Antibiotic Resistance Genes into Duluth-Superior Harbor. Environ. Sci. Technol. 2011, 45, 9543–9549. DOI: 10.1021/es202775r.
  • Vinué, L.; Sáenz, Y.; Rojo-Bezares, B.; Olarte, I.; Undabeitia, E.; Somalo, S.; Zarazaga, M.; Torres, C. Genetic Environment of Sul Genes and Characterisation of Integrons in Escherichia coli Isolates of Blood Origin in a Spanish Hospital. Int. J. Antimicrob. Agents 2010, 35, 492–496. DOI: 10.1016/j.ijantimicag.2010.01.012.
  • He, L. Y.; Ying, G. G.; Liu, Y. S.; Su, H. C.; Chen, J.; Liu, S. S.; Zhao, J. L. Discharge of Swine Wastes Risks Water Quality and Food Safety: Antibiotics and Antibiotic Resistance Genes, from Swine Sources to the Receiving Environments. Environ. Int. 2016, 92–93, 210–219. DOI: 10.1016/j.envint.2016.03.023.
  • He, L. Y.; Liu, Y. S.; Su, H. C.; Zhao, J. L.; Liu, S. S.; Chen, J.; Liu, W. R.; Ying, G. G. Dissemination of Antibiotic Resistance Genes in Representative Broiler Feedlots Environments: identification of Indicator ARGs and Correlations with Environmental Variables. Environ. Sci. Technol. 2014, 48, 13120–13129.
  • Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; Alvarez, P. J. J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44, 7220–7225. DOI: 10.1021/es100233w.
  • Bai, X.; Ma, X.; Xu, F.; Li, J.; Zhang, H.; Xiao, X. The Drinking Water Treatment Process as a Potential Source of Affecting the Bacterial Antibiotic Resistance. Sci. Total Environ. 2015, 533, 24–31.
  • Guo, X.; Li, J.; Yang, F.; Yang, J.; Yin, D. Prevalence of Sulfonamide and Tetracycline Resistance Genes in Drinking Water Treatment Plants in the Yangtze River Delta. China. Sci. Total Environ. 2014, 493, 626–631.
  • Su, H. C.; Liu, Y. S.; Pan, C. G.; Chen, J.; He, L. Y.; Ying, G. G. Persistence of Antibiotic Resistance Genes and Bacterial Community Changes in Drinking Water Treatment System: From Drinking Water Source to Tap Water. Sci. Total Environ. 2018, 616, 453–461. DOI: 10.1016/j.scitotenv.2017.10.318.
  • Gao, P.; Munir, M.; Xagoraraki, I. Correlation of Tetracycline and Sulfonamide Antibiotics with Corresponding Resistance Genes and Resistant Bacteria in a Conventional Municipal Wastewater Treatment Plant. Sci. Total Environ. 2012, 421–422, 173–183. DOI: 10.1016/j.scitotenv.2012.01.061.
  • Stalin, N.; Srinivasan, P. Molecular Characterization of Antibiotic Resistant Vibrio harveyi Isolated from Shrimp Aquaculture Environment in the South East Coast of India. Microb. Pathog. 2016, 97, 110–118. DOI: 10.1016/j.micpath.2016.05.021.
  • Yuan, J. L.; Ni, M.; Liu, M.; Zheng, Y.; Gu, Z. M. Occurrence of Antibiotics and Antibiotic Resistance Genes in a Typical Estuary Aquaculture Region of Hangzhou Bay, China. Mar. Pollut. Bull. 2019, 138, 376–384.
  • Singh, B.; Tyagi, A.; Thammegowda, N. K. B.; Ansal, M. D. Prevalence and Antimicrobial Resistance of Vibrios of Human Health Significance in Inland Saline Aquaculture Areas. Aquac. Res. 2018, 49, 2166–2174. DOI: 10.1111/are.13672.
  • Di Cesare, A.; Luna, G. M.; Vignaroli, C.; Pasquaroli, S.; Tota, S.; Paroncini, P.; Biavasco, F. Aquaculture Can Promote the Presence and Spread of Antibiotic-Resistant Enterococci in Marine Sediments. PLoS One 2013, 8, e62838. DOI: 10.1371/journal.pone.0062838.
  • Muziasari, W. I.; Managaki, S.; Parnanen, K.; Karkman, A.; Lyra, C.; Tamminen, M.; Suzuki, S.; Virta, M. Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment. PLoS One 2014, 9, e92702. DOI: 10.1371/journal.pone.0092702.
  • Huang, L.; Xu, Y. B.; Xu, J. X.; Ling, J. Y.; Chen, J. L.; Zhou, J. L.; Zheng, L.; Du, Q. P. Antibiotic Resistance Genes (ARGs) in Duck and Fish Production Ponds with Integrated or Non-Integrated Mode. Chemosphere 2017, 168, 1107–1114. DOI: 10.1016/j.chemosphere.2016.10.096.
  • Chen, B.; Lin, L.; Fang, L.; Yang, Y.; Chen, E.; Yuan, K.; Zou, S.; Wang, X.; Luan, T. Complex Pollution of Antibiotic Resistance Genes Due to Beta-Lactam and Aminoglycoside Use in Aquaculture Farming. Water Res. 2018, 134, 200–208. DOI: 10.1016/j.watres.2018.02.003.
  • Muziasari, W. I.; Pärnänen, K.; Johnson, T. A.; Lyra, C.; Karkman, A.; Stedtfeld, R. D.; Tamminen, M.; Tiedje, J. M.; Virta, M.; Smalla, K. Aquaculture Changes the Profile of Antibiotic Resistance and Mobile Genetic Element Associated Genes in Baltic Sea Sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. DOI: 10.1093/femsec/fiw052.
  • Su, H. C.; Hu, X. J.; Xu, Y.; Xu, W. J.; Huang, X. S.; Wen, G. L.; Yang, K.; Li, Z. J.; Cao, Y. C. Persistence and Spatial Variation of Antibiotic Resistance Genes and Bacterial Populations Change in Reared Shrimp in South China. Environ. Int. 2018, 119, 327–333. DOI: 10.1016/j.envint.2018.07.007.
  • Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Lozupone, C. A.; Turnbaugh, P. J.; Fierer, N.; Knight, R. Global Patterns of 16S rRNA Diversity at a Depth of Millions of Sequences per Sample. Proc. Natl. Acad. Sci. 2011, 108, 4516–4522. DOI: 10.1073/pnas.1000080107.
  • Knights, D.; Kuczynski, J.; Charlson, E. S.; Zaneveld, J.; Mozer, M. C.; Collman, R. G.; Bushman, F. D.; Knight, R.; Kelley, S. T. Bayesian Community-Wide Culture-Independent Microbial Source Tracking. Nat. Methods 2011, 8, 761–U107. DOI: 10.1038/nmeth.1650.
  • Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of Sulfonamide and Tetracycline-Resistant Bacteria and Resistance Genes in Aquaculture Environment. Water Res. 2012, 46, 2355–2364. DOI: 10.1016/j.watres.2012.02.004.
  • Martínez-Córdova, L. R.; Peña-Messina, E. Biotic Communities and Feeding Habits of Litopenaeus vannamei (Boone 1931) and Litopenaeus Stylirostris (Stimpson 1974) in Monoculture and Polyculture Semi-Intensive Ponds. Aquacult. Res. 2015, 36, 1075–1084.
  • Rungrassamee, W.; Klanchui, A.; Maibunkaew, S.; Chaiyapechara, S.; Jiravanichpaisal, P.; Karoonuthaisiri, N. Characterization of Intestinal Bacteria in Wild and Domesticated Adult Black Tiger Shrimp (Penaeus monodon). PLoS One. 2014, 9, e91853. DOI: 10.1371/journal.pone.0091853.
  • Zheng, Y. F.; Yu, M.; Liu, Y.; Su, Y.; Xu, T.; Yu, M. C.; Zhang, X. H. Comparison of Cultivable Bacterial Communities Associated with Pacific White Shrimp (Litopenaeus vannamei) Larvae at Different Health Statuses and Growth Stages. Aquaculture 2016, 451, 163–169. DOI: 10.1016/j.aquaculture.2015.09.020.
  • Jia, J.; Guan, Y.; Cheng, M.; Chen, H.; He, J.; Wang, S.; Wang, Z. Occurrence and Distribution of Antibiotics and Antibiotic Resistance Genes in Ba River, China. Sci. Total Environ. 2018, 642, 1136–1144. DOI: 10.1016/j.scitotenv.2018.06.149.
  • Kim, Y. B.; Jeon, J. H.; Choi, S.; Shin, J.; Lee, Y.; Kim, Y. M. Use of a Filtering Process to Remove Solid Waste and Antibiotic Resistance Genes from Effluent of a Flow-through Fish Farm. Sci. Total Environ. 2018, 615, 289–296. DOI: 10.1016/j.scitotenv.2017.09.279.
  • Wang, L. L.; Su, H. C.; Hu, X. J.; Xu, Y.; Xu, W. J.; Huang, X. S.; Li, Z. J.; Cao, Y. C.; Wen, G. L. Abundance and Removal of Antibiotic Resistance Genes (ARGs) in the Rearing Environments of Intensive Shrimp Aquaculture in South China. J. Environ. Sci. Health Pt. B. 2019, 54, 211–218. DOI: 10.1080/03601234.2018.1550310.
  • Su, H. C.; Pan, C. G.; Ying, G. G.; Zhao, J. L.; Zhou, L. J.; Liu, Y. S.; Tao, R.; Zhang, R. Q.; He, L. Y. Contamination Profiles of Antibiotic Resistance Genes in the Sediments at a Catchment Scale. Sci. Total Environ. 2014, 490, 708–714.
  • Stokes, H. W.; Gillings, M. R. Gene Flow, Mobile Genetic Elements and the Recruitment of Antibiotic Resistance Genes into Gram-Negative Pathogens. FEMS Microbiol. Rev. 2011, 35, 790–819. DOI: 10.1111/j.1574-6976.2011.00273.x.
  • Tomova, A.; Ivanova, L.; Buschmann, A. H.; Rioseco, M. L.; Kalsi, R. K.; Godfrey, H. P.; Cabello, F. C. Antimicrobial Resistance Genes in Marine Bacteria and Human Uropathogenic Escherichia coli from a Region of Intensive Aquaculture. Environ. Microbiol. Rep. 2015, 7, 803–809. DOI: 10.1111/1758-2229.12327.
  • Cabello, F. C.; Godfrey, H. P.; Buschmann, A. H.; Dölz, H. J. Aquaculture as yet Another Environmental Gateway to the Development and Globalisation of Antimicrobial Resistance. Lancet Infect. Dis. 2016, 16, e127–e133. DOI: 10.1016/S1473-3099(16)00100-6.
  • Heuer, O. E.; Kruse, H.; Grave, K.; Collignon, P.; Karunasagar, I.; Angulo, F. J. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture. Clin. Infect. Dis. 2009, 49, 1248–1253. DOI: 10.1086/605667.
  • Pei, R.; Kim, S.-C.; Carlson, K. H.; Pruden, A. Effect of River Landscape on the Sediment Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Res. 2006, 40, 2427–2435. DOI: 10.1016/j.watres.2006.04.017.
  • Li, J.; Shao, B.; Shen, J.; Wang, S.; Wu, Y. Occurrence of Chloramphenicol-Resistance Genes as Environmental Pollutants from Swine Feedlots. Environ. Sci. Technol. 2013, 47, 2892–2897.
  • Le, T. M. V.; Ngo, N. Q. M.; Thuong, T. C.; Khuong, H. D.; Tran, V. T. N.; Thompson, C.; Campbell, J. I.; de Jong, M.; Farrar, J. J.; Schultsz, C.; et al. The co-Selection of Fluoroquinolone Resistance Genes in the Gut Flora of Vietnamese Children. PLoS One. 2012, 7, e42919. DOI: 10.1371/journal.pone.0042919.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.