Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 2
126
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Persistence and fate of chlortetracycline in the aquatic environment under sub-tropical conditions: generation and dissipation of metabolites

ORCID Icon & ORCID Icon

References

  • Arikan, O.; Rice, C.; Codling, E. Occurrence of Antibiotics and Hormones in a Major Agricultural Watershed. Desalination 2008, 226, 121–133. DOI: 10.1016/j.desal.2007.01.238.
  • Elmund, G. K.; Morrison, S. M.; Grant, D. W.; Nevins, M. P. Role of Excreted Chlortetracycline in Modifying the Decomposition Process in Feedlot Waste. Bull. Environ. Contam. Toxicol. 1971, 6, 129–132. DOI: 10.1007/BF01540093.
  • Hamscher, G.; Abu-Quare, A.; Sczesny, S.; Hoper, H.; Nau, H. Determination of Tetracyclines and Tylosin in Soil and Water Samples from Agricultural Areas in Lower Saxony. In Proceedings of the Euroside IV Conference; van Ginkel, L.A.; Ruiter, A., Eds.; National Institute of Public Health and the Environment (RIVM): Bilthoven: Netherlands, 2000; pp 522–526
  • Yang, S.; Carlson, K. Evolution of Antibiotic Occurrence in a River through Pristine, Urban and Agricultural Landscapes. Water Res. 2003, 37, 4645–4656. DOI: 10.1016/S0043-1354(03)00399-3.
  • Kolpin, D. W.; Furlong, E. T.; Meyer, M. T.; Thurman, E. M.; Zaugg, S. D.; Barber, L. B.; Buxton, H. T. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999–2000: A National Reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. DOI: 10.1021/es011055j.
  • Chen, Z.; Wang, Y.; Wen, Q. Effects of Chlortetracycline on the Fate of Multi-Antibiotic Resistance Genes and the Microbial Community during Swine Manure Composting. Environ. Pollut. 2018, 237, 977–987. DOI: 10.1016/j.envpol.2017.11.009.
  • Li, W.; Ali, F.; Cai, Q.; Yao, Z.; Sun, L.; Lin, W.; Lin, X. Quantitative Proteomic Analysis Reveals That Chemotaxis is Involved in Chlortetracycline Resistance of Aeromonas hydrophila. J. Proteomics. 2018, 172, 143–151. DOI: 10.1016/j.jprot.2017.09.011.
  • Kyselková, M.; Kotrbová, L.; Bhumibhamon, G.; Chroňáková, A.; Jirout, J.; Vrchotová, N.; Schmitt, H.; Elhottová, D. Tetracycline Resistance Genes Persist in Soil Amended with Cattle Faeces Independently from Chlortetracycline Selection Pressure. Soil Biol. Biochem. 2015, 81, 259–265. DOI: 10.1016/j.soilbio.2014.11.018.
  • Su, H. C.; Ying, G. G.; Tao, R.; Zhang, R. Q.; Zhao, J. L.; Liu, Y. S. Class 1 and 2 Integrons, Sul Resistance Genes and Antibiotic Resistance in Escherichia coli Isolated from Dongjiang River, South China. Environ. Pollut. 2012, 169, 42–49. DOI: 10.1016/j.envpol.2012.05.007.
  • Ma, Y.; Gao, N.; Li, C. Degradation and Pathway of Tetracycline Hydrochloride in Aqueous Solution by Potassium Ferrate. Environ. Eng. Sci. 2012, 29, 357–362. DOI: 10.1089/ees.2010.0475.
  • Zaranyika, M. F.; Dzomba, P. Dissipation of Chlortetracycline in the Aquatic Environment: Characterization in Terms of a Generalized Multi-Phase Pseudo-Zero Order Rate Law. Int. J. Chem. Kinet. 2019, 51, 817–814. DOI: 10.1002/kin.21311.
  • Li, Y.; Wang, H.; Liu, X.; Zhao, G.; Sun, Y. Dissipation Kinetics of Oxytetracycline, Tetracycline, and Chlortetracycline Residues in Soil. Environ. Sci. Pollut. Res. Int. 2016, 23, 13822–13831. DOI: 10.1007/s11356-016-6513-8.
  • Bao, Y.; Zhou, Q.; Guan, L.; Wang, Y. Depletion of Chlortetracycline during Composting of Aged and Spiked manures. Waste Manage. 2009, 29, 1416–1423. DOI: 10.1016/j.wasman.2008.08.022.
  • Loftin, K. A.; Adams, C. D.; Meyer, M. T.; Surampalli, R. Effects of Ionic Strength, temperature, and pH on degradation of selected antibiotics. J. Environ. Qual. 2008, 37, 378–386. DOI: 10.2134/jeq2007.0230.
  • Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J. Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria. Arch. Environ. Contam. Toxicol. 2002, 42, 263–271. DOI: 10.1007/s00244-001-0017-2.
  • Halling-Sørensen, B.; Lykkeberg, A.; Ingerslev, F.; Blackwell, P.; Tjørnelund, J. Characterization of the Abiotic Degradation Pathways of Oxytetracyclines in Soil Interstitial Water Using LC-MS-MS. Chemosphere 2003, 50, 1331–1342. DOI: 10.1016/S0045-6535(02)00766-X.
  • Loke, M.-L.; Jespersen, S.; Vreeken, R.; Halling-Sørensen, B.; Tjørnelund, J. Determination of Oxytetracycline and Its Degradation Products by High-Performance Liquid Chromatography Tandem Mass Spectrometry in Manure-Containing Anaerobic Test Systems. J. Chromatogr. B 2003, 783, 11–23. DOI: 10.1016/S1570-0232(02)00468-3.
  • Chen, Y.; Li, H.; Wang, Z.; Tao, T.; Wei, D.; Hu, C. Photolysis of Chlortetracycline in Aqueous Solution: Kinetics, Toxicity and Products. J. Environ. Sci. 2012, 24, 254–260. DOI: 10.1016/S1001-0742(11)60775-4.
  • Zaranyika, M. F.; Dzomba, P.; Kugara, J. Degradation of Oxytetracycline in the Aquatic Environment: A Proposed Steady State Kinetic Model That Takes into account Hydrolysis, Photolysis, Microbial Degradation and Adsorption by Colloidal and Sediment Particles. Environ. Chem. 2015, 12, 174–188. DOI: 10.1071/EN14116.
  • Zaranyika, M. F.; Dzomba, P.; Kugara, J. Speciation and Persistence of Doxycycline in the Aquatic Environment: Characterization in Terms of Steady State Kinetics. J. Environ. Sci. Health. B. 2015, 50, 908–918. Doi: 10. 1080/03601234.2015.1067101.
  • US Environmental Protection Agency (EPA). In Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analysis, Technical Manual Draft. US Environmental Protection Agency, Office of water: Washington, DC, 2001, pp 1–65.
  • American Water Works Association (AWWA). Method 9215B Pour Plate Method. In Standard Methods for the Examination of Water and Waste Water, 19th ed.; American Public Health association, American Water Works Association, Water Environment Federation: Washington, DC, 2004, pp 1–36.
  • Dzomba, P.; Kugara, J.; Zaranyika, M. F. Extraction of Tetracycline Antimicrobials from River Water and Sediment: A Comparative Study of Three Solid Phase Extraction Methods. Afr. J. Pharm. Pharmacol. 2015, 9, 523–531. 4341 DOI: 10.5897/AJPP2015.
  • Gschwend, P. M.; Wu, S. On the Constancy of Sediment-Water Partition Coefficients of Hydrophobic Organic Pollutants. Environ. Sci. Technol. 1985, 19, 90–96. DOI: 10.1021/es00131a011.
  • Cessna, A. J.; Kuchta, S. L.; Bailey, J.; Waiser, M.; Tumber, V. Isomerization of Chlortetracycline in Prairie Wetland Water. J. Environ. Qual. 2020, 49, 1435–1444. DOI: 10.1002/jeq2.20079.
  • Lee, C.; Jeong, S.; Ju, M.; Kim, J. Y. Fate of Chlortetracycline Antibiotics during Anaerobic Degradation of Cattle Manure. J. Hazard. Mater. 2020, 386, 121894 DOI: 10.1016/j.jhazmat.2019.121894.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.