Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 56, 2021 - Issue 6
191
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A simple approach to the prediction of soil sorption of organophosphorus pesticides

, , , & ORCID Icon

References

  • Zheng, L. L.; Pi, F. W.; Wang, Y. F.; Xu, H.; Zhang, Y. Z.; Sun, X. L. Photocatalytic Degradation of Acephate, Omethoate, and Methyl Parathion by Fe3O4@SiO2@mTiO2 Nanomicrospheres. J. Hazard. Mater. 2016, 315, 11–22. DOI: 10.1016/j.jhazmat.2016.04.064.
  • Cui, H. F.; Wu, W. W.; Li, M. M.; Song, X. J.; Lv, Y. X.; Zhang, T. T. A Highly Stable Acetylcholinesterase Biosensor Based on Chitosan-TiO(2)Graphene Nanocomposites for Detection of Organophosphate Pesticides. Biosens Bioelectron 2018, 99, 223–229. DOI: 10.1016/j.bios.2017.07.068.
  • Lin, B. X.; Yan, Y.; Guo, M. L.; Cao, Y. J.; Yu, Y.; Zhang, T. Y.; Huang, Y.; Wu, D. Modification-Free Carbon Dots as Turn-on Fluorescence Probe for Detection of Organophosphorus Pesticides. Food Chem. 2018, 245, 1176–1182. DOI: 10.1016/j.foodchem.2017.11.038.
  • Yang, Q. F.; Wang, J.; Zhang, W. T.; Liu, F. B.; Yue, X. Y.; Liu, Y. N.; Yang, M.; Li, Z. H.; Wang, J. L. Interface Engineering of Metal Organic Framework on Graphene Oxide with Enhanced Adsorption Capacity for Organophosphorus Pesticide. Chem. Eng. J. 2017, 313, 19–26. DOI: 10.1016/j.cej.2016.12.041.
  • Delle Site, A. Factors Affecting Sorption of Organic Compounds in Natural Sorbent/Water Systems and Sorption Coefficients for Selected Pollutants. A Review. J. Phys. Chem. Ref. Data 2001, 30, 187–439. DOI: 10.1063/1.1347984.
  • Zhang, D. M.; Zhu, D. Q.; Chen, W. Sorption of Nitroaromatics to Soils: Comparison of the Importance of Soil Organic Matter versus Clay. Environ. Toxicol. Chem. 2009, 28, 1447–1454. DOI: 10.1897/08-406.1.
  • Wen, Y.; Su, L. M.; Qin, W. C.; He, J.; Fu, L.; Zhang, X. J.; Zhao, Y. H. Linear and Non-Linear Relationships between Soil Sorption and Hydrophobicity. Sar Qsar Environ. Res. 2012, 23, 111–123. DOI: 10.1080/1062936X.2011.636761.
  • Freitas, M. R.; Barigye, S. J.; Dare, J. K.; Freitas, M. P. Aug-MIA-SPR/PLS-DA Classification of Carbonyl Herbicides according to Levels of Soil Sorption. Geoderma 2016, 268, 1–6. DOI: 10.1016/j.geoderma.2016.01.013.
  • Koutsoukas, A.; Paricharak, S.; Galloway, W.; Spring, D. R.; Ijzerman, A. P.; Glen, R. C.; Marcus, D.; Bender, A. How Diverse Are Diversity Assessment Methods? A Comparative Analysis and Benchmarking of Molecular Descriptor Space. J. Chem. Inf. Model. 2014, 54, 230–242. DOI: 10.1021/ci400469u.
  • Freitas, M. P.; Brown, S. D.; Martins, J. A. MIA-QSAR: A Simple 2D Image-Based Approach for Quantitative Structure–Activity Relationship Analysis. J. Mol. Struct. 2005, 738, 149–154. DOI: 10.1016/j.molstruc.2004.11.065.
  • Liu, H. X.; Shi, J. Q.; Liu, H.; Wang, Z. Y. Improved 3D-QSPR Analysis of the Predictive Octanol-Air Partition Coefficients of Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers. Atmos. Environ. 2013, 77, 840–845. DOI: 10.1016/j.atmosenv.2013.05.068.
  • Garcia, I.; Fall, Y.; Garcia-Mera, X.; Prado-Prado, F. Theoretical Study of GSK-3α: Neural Networks QSAR Studies for the Design of New Inhibitors Using 2D Descriptors. Mol. Divers. 2011, 15, 947–955. DOI: 10.1007/s11030-011-9325-2.
  • Zdravkovic, M.; Antovic, A.; Veselinovic, J. B.; Sokolovic, D.; Veselinovic, A. M. QSPR in Forensic Analysis - The Prediction of Retention Time of Pesticide Residues Based on the Monte Carlo Method. Talanta 2018, 178, 656–662. DOI: 10.1016/j.talanta.2017.09.064.
  • Cronin, M. T. D.; Madden, J. C.; Yang, C.; Worth, A. P. Unlocking the Potential of in Silico Chemical Safety Assessment - A report on a cross-sector symposium on current opportunities and future challenges. Comput. Toxicol. 2019, 10, 38–43. DOI: 10.1016/j.comtox.2018.12.006.
  • Silla, J. M.; Nunes, C. A.; Cormanich, R. A.; Guerreiro, M. C.; Ramalho, T. C.; Freitas, M. P. MIA-QSPR and Effect of Variable Selection on the Modeling of Kinetic Parameters Related to Activities of Modified Peptides against Dengue Type 2. Chemometr. Intell. Lab. Syst. 2011, 108, 146–149. DOI: 10.1016/j.chemolab.2011.06.009.
  • Li, B. Q.; Xu, M. L.; Wang, X.; Zhai, H. L.; Chen, J.; Liu, J. J. An Approach to the Simultaneous Quantitative Analysis of Metabolites in Table Wines by 1H NMR Self-Constructed Three-Dimensional Spectra. Food Chem. 2017, 216, 52–59. DOI: 10.1016/j.foodchem.2016.08.018.
  • Liu, J. J.; Li, B. Q.; Xu, M. L.; Wang, X.; Zhai, H. L.; Muhire, J. Simultaneous Quantitative Analysis of Three Components in Mixture Samples Based on NIR Spectra with Temperature Effect. Anal. Methods 2017, 9, 2076–2081. DOI: 10.1039/C7AY00448F.
  • Wang, X.; Li, B. Q.; Zhai, H. L.; Xiong, M. Y.; Liu, Y. An Efficient Approach to the Quantitative Analysis of Humic Acid in Water. Food Chem. 2016, 190, 1033–1039. DOI: 10.1016/j.foodchem.2015.06.074.
  • Cronin, M. T. D.; W, J. D.; Jaworska, J. S.; Comber, M. H. I.; Watts, C. D.; Worth, A. P. Use of QSARs in International Decision-Making Frameworks to Predict Ecologic Effects and Environmental Fate of Chemical Substances. Environ. Health Perspect. 2003, 111, 1376–1390. DOI: 10.1289/ehp.5759.
  • Dare, J. K.; Silva, C. F.; Freitas, M. P. Revealing Chemophoric Sites in Organophosphorus Insecticides through the MIA-QSPR Modeling of Soil Sorption Data. Ecotoxicol. Environ. Saf. 2017, 144, 560–563. DOI: 10.1016/j.ecoenv.2017.06.072.
  • Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the Definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49, 1669–1678. DOI: 10.1021/ci900115y.
  • Co-Operation, Of.E. and Development. Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q) SAR] Models. OECD Publishing: Paris, France, 2014.
  • Garkani-Nejad, Z.; Poshteh-Shirani, M. Prediction of Antihypertensive Activity of Pyridazinone Derivatives through Multivariate Image Analysis Applied to QSAR. Med. Chem. Res. 2013, 22, 3389–3397. DOI: 10.1007/s00044-012-0356-8.
  • Mukundan, R.; Ong, S. H.; Lee, P. A. Image Analysis by Tchebichef Moments. IEEE Trans. Image Process. 2001, 10, 1357–1364. DOI: 10.1109/83.941859.
  • Muhire, J.; Li, B. Q.; Zhai, H. L.; Wang, X.; Xu, M. L. A Fast Chemometrics Approach to Quantitative Analysis of Metformin Hydrochloride, Enalapril Maleate, and Captopril in Tablets Based on HPLC-PAD Spectra. Acta Chromatogr. 2019, 31, 228–234. DOI: 10.1556/1326.2018.00479.
  • Zhai, H. L.; Li, B. Q.; Chen, J.; Wang, X.; Xu, M. L.; Liu, J. J.; Lu, S. H. Chemical Image Moments and Their Applications. Trac-Trends Anal. Chem. 2018, 103, 119–125. DOI: 10.1016/j.trac.2018.03.017.
  • Sharma, M. J.; Jin, Y. S. Stepwise Regression Data Envelopment Analysis for Variable Reduction. Appl. Math. Comput. 2015, 253, 126–134. DOI: 10.1016/j.amc.2014.12.050.
  • Ghafourian, T.; Cronin, M. T. D. The Impact of Variable Selection on the Modelling of Oestrogenicity. SAR QSAR Environ. Res. 2005, 16, 171–190. DOI: 10.1080/10629360412331319808.
  • Gajewicz, A. How to Judge Whether QSAR/Read-across Predictions Can Be Trusted: A Novel Approach for Establishing a Model’s Applicability Domain. Environ. Sci. Nano 2018, 5, 408–421. DOI: 10.1039/C7EN00774D.
  • Gupta, S.; Basant, N.; Singh, K. P. Estimating Sensory Irritation Potency of Volatile Organic Chemicals Using QSARs Based on Decision Tree Methods for Regulatory Purpose. Ecotoxicology 2015, 24, 873–886. DOI: 10.1007/s10646-015-1431-y.
  • Shacham, M.; Brauner, N. Application of Stepwise Regression for Dynamic Parameter Estimation. Comput. Chem. Eng. 2014, 69, 26–38. DOI: 10.1016/j.compchemeng.2014.06.013.
  • Roy, P. P.; Leonard, J. T.; Roy, K. Exploring the Impact of Size of Training Sets for the Development of Predictive QSAR Models. Chemometr. Intell. Lab. Syst. 2008, 90, 31–42. DOI: 10.1016/j.chemolab.2007.07.004.
  • Mitra, I.; Saha, A.; Roy, K. Exploring Quantitative Structure-Activity Relationship Studies of Antioxidant Phenolic Compounds Obtained from Traditional Chinese Medicinal Plants. Mol. Simul. 2010, 36, 1067–1079. DOI: 10.1080/08927022.2010.503326.
  • Papa, E.; Villa, F.; Gramatica, P. Statistically Validated QSARs, Based on Theoretical Descriptors, for Modeling Aquatic Toxicity of Organic Chemicals in Pimephales Promelas (Fathead Minnow). J. Chem. Inf. Model. 2005, 45, 1256–1266. DOI: 10.1021/ci050212l.
  • Sall, J. Leverage Plots for General Linear Hypotheses. Am. Stat. 1990, 44, 308–315. DOI: 10.2307/2684358.
  • Ertürk, M. D.; Saçan, M. T.; Novic, M.; Minovski, N. Quantitative Structure-activity Relationships (QSARs) Using the Novel Marine Algal Toxicity Data of Phenols. J. Mol. Graph. Model. 2012, 38, 90–100. DOI: 10.1016/j.jmgm.2012.06.002.
  • Freitas, M. P.; Martins, J. A. Simple and Highly Predictive QSAR Method: Application to a Series of (S)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides. Talanta 2005, 67, 182–186. DOI: 10.1016/j.talanta.2005.02.016.
  • Guimaraes, M. C.; da Mota, E. G.; Silva, D. G.; Freitas, M. P. Aug-MIA-QSPR Modelling of the Toxicities of Anilines and Phenols to Vibrio fischeri and Pseudokirchneriella subcapitata. Chemometrics Intell. Lab. Syst. 2014, 134, 53–57. DOI: 10.1016/j.chemolab.2014.03.005.
  • da Mota, E. G.; Duarte, M. H.; Barigye, S. J.; Ramalho, T. C.; Freitas, M. P. Exploring MIA-QSPR's for the Modeling of Biomagnification Factors of Aromatic Organochlorine Pollutants. Ecotoxicol. Environ. Saf. 2017, 135, 130–136. DOI: 10.1016/j.ecoenv.2016.09.030.
  • Mukundan, R. Some Computational Aspects of Discrete Orthonormal Moments. IEEE Trans. Image Process. 2004, 13, 1055–1059. DOI: 10.1109/TIP.2004.828430.
  • Li, X. M.; X, W.; Qiong, L. B.; Lin, Z. H.; Hua, L. S. Application of Image Moments in MIA-QSAR. J. Chemom. 2018, 32, e2958. DOI: 10.1002/cem.2958.
  • Lu, S. H.; Li, B. Q.; Zhai, H. L.; Zhang, X.; Zhang, Z. Y. An Effective Approach to Quantitative Analysis of Ternary Amino Acids in Foxtail Millet Substrate Based on Terahertz Spectroscopy. Food Chem. 2018, 246, 220–227. DOI: 10.1016/j.foodchem.2017.11.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.