Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 1
251
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation of dimethoate into novel metabolites by bacterial isolate Pseudomonas kilonensis MB490

, ORCID Icon &

References

  • Hayes, W. J.; Laws, E. R. (Eds.). In Handbook of Pesticide Toxicology. Classes of Pesticides. Academic Press, Inc.: NY, 1990; p 1576.
  • Shi, X.; Zhang, R.; Li, Y.; Zhang, Q.; Xu, X.; Wang, W. Mechanism Theoretical Study on OH-Initiated Atmospheric Oxidation Degradation of Dimethoate. J. Mol. Struct. 2018, 1163, 61–67. DOI: https://doi.org/10.1016/j.molstruc.2018.02.104.
  • Granitto, Y. Use of Dimethoate to Be Banned in EU. Olive Oil Times. https://www.oliveoiltimes.com/production/use-of-dimethoate-to-be-banned-in-eu/68689 (accessed July 16, 2019).
  • Tomlin, C. D. S. The Pesticide Manual, a World Compendium. British Crop Protection Council: Alton, Hampshire, UK, 2009.
  • Hundley, H. K.; Cairns, T.; Luke, M. A.; Masumoto, H. T. Pesticide Residue Findings by the Luke Method in Domestic and Imported Foods and Animal Feeds for Fiscal Years 1982–1986. J. Assoc. Off. Anal. Chem. 1988, 71, 875–892.
  • Megeed, A. A.; El-Nakieb, F. A. Bioremediation of Dimethoate by Effective Microorganisms in Water. Terr. Aquat. Environ. Toxicol. 2008, 2, 1–4.
  • Zaranyika, M. F.; Mlilo, J. Speciation and Persistence of Dimethoate in the Aquatic Environment: characterization in Terms of a Rate Model That Takes into account Hydrolysis, Photolysis, Microbial Degradation and Adsorption of the Pesticide by Colloidal and Sediment Particles. S. Afr. J. Chem. 2014, 67, 233–240.
  • Liu, Y. H.; Chung, Y. C.; Xiong, Y. Purification and Characterization of a Dimethoate-Degrading Enzyme of Aspergillus niger ZHY256, Isolated from Sewage. Appl. Environ. Microbiol. 2001, 67, 3746–3749.
  • DebMandal, M.; Mandal, S.; Pal, N. K.; Aich, A. Potential Metabolites of Dimethoate Produced by Bacterial Degradation. World J. Microbiol. Biotechnol. 2008, 24, 69–72. DOI: https://doi.org/10.1007/s11274-007-9440-5.
  • Ishag, A. E.; Abdelbagi, A. O.; Hammad, A. M.; Elsheikh, E. A.; Elsaid, O. E.; Hur, J. H.; Laing, M. D. Biodegradation of Chlorpyrifos, Malathion, and Dimethoate by Three Strains of Bacteria Isolated from Pesticide-Polluted Soils in Sudan. J Agric Food Chem. 2016, 64, 8491–8498. DOI: https://doi.org/10.1021/acs.jafc.6b03334.
  • Saleh, M.; Youssef, A. F.; Muhammed, Y. The Potentiality of Lysinibacillus sphaericus DM-3 and Bacillus cereus DM-5 in Degrading Dimethoate. Egypt. J. Bot. 2018, 58, 217–232.
  • Jayamadhuri, R. J. Degradation of Dimethoate by Cellulolytic Bacteria in Cotton Soils. Global J. Med. Res. 2014, 14, 1–5.
  • Ahmad, S.; Chaudhary, H. J.; Damalas, C. A. Microbial Detoxification of Dimethoate through Mediated Hydrolysis by Brucella sp. PS4: molecular Profiling and Plant Growth-Promoting Traits. Environ. Sci. Pollut. Res. 2021, 1–12. DOI:https://doi.org/10.1007/s11356-021-15806-1.
  • Ambreen, S.; Yasmin, A.; Aziz, S. Isolation and Characterization of Organophosphorus Phosphatases from Bacillus thuringiensis MB497 Capable of Degrading Chlorpyrifos, Triazophos and Dimethoate. Heliyon 2020, 6, e04221. DOI: https://doi.org/10.1016/j.heliyon.2020.e04221.
  • Horne, I.; Harcourt, R. L.; Sutherland, T. D.; Russell, R. J.; Oakeshott, J. G. Isolation of a Pseudomonas Monteilli Strain with a Novel Phosphotriesterase. FEMS Microbiol. Lett. 2002, 206, 51–55.
  • Jiang, H.; Yang, C.; Qu, H.; Liu, Z.; Fu, Q. S.; Qiao, C. Cloning of a Novel Aldo-Keto Reductase Gene from Klebsiella sp. strain F51-1-2 and Its Functional Expression in Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 4959–4965. DOI: https://doi.org/10.1128/AEM.02993-06
  • Randhawa, M. A.; Abid, Q. U. Z.; Anjum, F. M.; Chaudhary, A. S.; Sajid, M. W.; Khalil, A. A. Organo-Chlorine Pesticide Residues in Okra and Brinjal Collected from Peri-Urban Areas of Big Cities of Punjab Pakistan. Pak. J. Agric. Sci. 2016, 53, 425–430. DOI: https://doi.org/10.21162/PAKJAS/16.1895.
  • Tariq, M. I.; Afzal, S.; Hussain, I.; Sultana, N. Pesticides Exposure in Pakistan: A Review. Environ. Int. 2007, 33, 1107–1122.
  • Jabbar, A.; Masud, S. Z.; Parveen, Z.; Ali, M. Pesticide Residues in Cropland Soils and Shallow Groundwater in Punjab Pakistan. Bull. Environ. Contam. Toxicol. 1993, 51, 268–273.
  • Tahir, S.; Anwar, T.; Ahmad, I.; Aziz, S.; Mohammad, A.; Ahad, K. Determination of Pesticide Residues in Fruits and Vegetables in. J. Environ. Biol. 2001, 22, 71–74.
  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, 1989.
  • Ambreen, S.; Yasmin, A. Isolation, Characterization and Identification of Organophosphate Pesticide Degrading Bacterial Isolates and Optimization of Their Potential to Degrade Chlorpyrifos. Intl. J. Agric. Biol. 2020a, 24, 699–706.
  • Rayu, S.; Nielsen, U. N.; Nazaries, L.; Singh, B. K. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3, 5, 6-Trichloro-2-Pyridinol-Degrading Bacteria from Sugarcane Farm Soils. Front. Microbiol. 2017, 8, 518–516. DOI: https://doi.org/10.3389/fmicb.2017.00518.
  • Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729.
  • Chishti, Z.; Arshad, M. Growth Linked Biodegradation of Chlorpyrifos by Agrobacterium and Enterobacter Spp. Int. J. Agric. Biol. 2013, 15, 19–‒26.
  • Shaeyan, M.; Tirandaz, H.; Ghanbarpour, S.; Seyedipour, N.; Shavandi, M.; Dastgheib, S. M. Bioremediation of a Drilling Waste-Contaminated Soil; Biotreatability Assessment and Microcosm Optimization for Developing a Field-Scale Remediation Process. IJBiotech 2018, 16, 193–199. DOI: https://doi.org/10.21859/ijb.1254.
  • Rokade, K. B.; Mali, G. V. Biodegradation of Chlorpyrifos by Pseudomonas Desmolyticum NCIM 2112. Int. J. Pharm. Biol. Sci. 2013, 4, 609–616.
  • El-Bestawy, E.; Sabir, J.; Mansy, A. H.; Zabermawi, N. Comparison among the Efficiency of Different Bioremediation Technologies of Atrazine-Contaminated Soils. J. Bioremed. Biodegrad. 2014, 5, 1–7. DOI: https://doi.org/10.4172/2155-6199.1000237
  • Singh, B. K.; Walker, A.; Morgan, J. A.; Wright, D. J. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils. Appl. Environ. Microbiol. 2004, 70, 4855–4863. DOI: https://doi.org/10.1128/AEM.70.8.4855-4863.2004.
  • Li, R.; Zheng, J.; Wang, R.; Song, Y.; Chen, Q.; Yang, X.; Li, S.; Jiang, J. Biochemical Degradation Pathway of Dimethoate by Paracoccus sp. Lgjj-3 Isolated from Treatment Wastewater. Int. Biodeterior. Biodegradation 2010, 64, 51–57. DOI: https://doi.org/10.1016/j.ibiod.2009.10.007.
  • Bagyalakshmi, J.; Kavitha, G.; Ravi, T. K. Residue Determination of Dimethoate in Leafy Vegetables (Spinach) Using RP-HPLC. Inter. J. Pharm. Sci. Res. 2011, 2, 62–64.
  • Bishnoi, K.; Sain, U.; Kumar, R.; Singh, R.; Bishnoi, N. R. Distribution and Biodegradation of Polycyclic Aromatic Hydrocarbons in Contaminated Sites of Hisar (India). Indian J. Exp. Biol. 2009, 47, 210–217.
  • Eissa, F. I.; Mahmoud, H. A.; Massoud, O. N.; Ghanem, K. M.; Gomaa, I. M. Biodegradation of Chlorpyrifos by Microbial Strains Isolated from Agricultural Wastewater. J. Am. Sci. 2014, 10, 98–108.
  • Niaz, A.; Ranjha, A. M.; Rahmatullah, A. H.; Waqas, M. Boron Status of Soils as Affected by Different Soil Characteristics–pH, CaCO3, Organic Matter and Clay Contents. Pak. J. Agric. Sci. 2007, 44, 428–435.
  • Deshpande, N. M.; Dhakephalkar, P. K.; Kanekar, P. P. Plasmid‐Mediated Dimethoate Degradation in Pseudomonas aeruginosa MCMB‐427. Lett. Appl. Microbiol. 2001, 33, 275–279.
  • Liang, Y.; Zeng, F.; Qiu, G.; Lu, X.; Liu, X.; Gao, H. Co-Metabolic Degradation of Dimethoate by Raoultella sp. X1. Biodegradation 2009, 20, 363–373. DOI: https://doi.org/10.1007/s10532-008-9227-x
  • Gray, N. F. The Effect of Small Changes in Incubation Temperature on the Five Day Biochemical Oxygen Demand Test. Environ. Technol. Lett. 1989, 10, 253–258. DOI: https://doi.org/10.1080/09593338909384739.
  • Jilani, S. Comparative Assessment of Growth and Biodegradation Potential of Soil Isolate in the Presence of Pesticides. Saudi. J. Biol. Sci. 2013, 20, 257–264. DOI: https://doi.org/10.1016/j.sjbs.02.007.
  • Siddique, T.; Okeke, B. C.; Arshad, M.; Frankenberger, W. T. Biodegradation Kinetics of Endosulfan by Fusarium Ventricosum and a Pandoraea Species. J. Agric. Food Chem. 2003, 51, 8015–8019. https://doi.org/10.1021/jf030503z.
  • Ambreen, S.; Yasmin, A. Novel Metabolites of Triazophos Formed during Degradation by Bacterial Strains Pseudomonas kilonensis MB490, Pseudomonas kilonensis MB498 and Pseudomonas sp. MB504 Isolated from Cotton Fields. J. Environ. Sci. Health B 2020b, 55, 1–8. DOI: https://doi.org/10.1080/03601234.2020.1823171.
  • Ambreen, S.; Yasmin, A. Novel Degradation Pathways for Chlorpyrifos and 3, 5, 6-Trichloro-2-Pyridinol Degradation by Bacterial Strain Bacillus thuringiensis MB497 Isolated from Agricultural Fields of Mianwali, Pakistan. Pest. Biochem. Physiol. 2021, 172, 104750. DOI: https://doi.org/10.1016/j.pestbp.2020.104750.
  • Derbalah, A.; Massoud, A.; El-Mehasseb, I.; Allah, M. S.; Ahmed, M. S.; Al-Brakati, A.; Elmahallawy, E. K. Microbial Detoxification of Dimethoate and Methomyl Residues in Aqueous Media. Water 2021, 13, 1117. DOI: https://doi.org/10.3390/w13081117.
  • Thapar, S.; Bhushan, R.; Mathur, R. P. Degradation of Organophosphorus and Carbamate Pesticides in Soils—HPLC Determination. Biomed. Chromatogr. 1995, 9, 18–22.
  • Gu, J. D, The University of Hong Kong. Biodegradation Testing: So Many Tests but Very Little New Innovation. Appl. Environ. Biotechnol. 2016, 1, 92–95. DOI: https://doi.org/10.18063/AEB.2016.01.007.
  • Rigas, F.; Papadopoulou, K.; Dritsa, V.; Doulia, D. Bioremediation of a Soil Contaminated by Lindane Utilizing the Fungus Ganoderma Australe via Response Surface Methodology. J. Hazard. Mater. 2007, 140, 325–332.
  • Abdurruhman, A.; Abdelbagi, A.; Ahmed, A. Biodegradation of Pendimethalin and Atrazine by Pseudomonas pickettii Isolated from Pesticides Polluted Soil under Laboratory Conditions. J. Biotechnol. Sci. Res. 2015, 2, 94–102.
  • Andreozzi, R.; Ialongo, G.; Marotta, R.; Sanchirico, R. The Thermal Decomposition of Dimethoate. J. Hazard. Mater. 1999, 64, 283–294.
  • Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Albanis, T. Study of the Removal of Dichlorvos and Dimethoate in a Titanium Dioxide Mediated Photocatalytic Process through the Examination of Intermediates and the Reaction Mechanism. J. Hazard. Mater. 2006, 137, 1056–1064. DOI: https://doi.org/10.1016/j.jhazmat.2006.03.042.
  • Zhang, J.; Yin, J. G.; Hang, B. J.; Cai, S.; He, J.; Zhou, S. G.; Li, S. P. Cloning of a Novel Arylamidase Gene from Paracoccus sp. strain FLN-7 That Hydrolyzes Amide Pesticides. Appl. Environ. Microbiol. 2012, 78, 4848–4855.
  • Buratti, F. M.; Testai, E. Evidences for CYP3A4 Autoactivation in the Desulfuration of Dimethoate by the Human Liver. Toxicology 2007, 241, 33–46. DOI: https://doi.org/10.1016/j.tox.2007.08.081.
  • Kanekar, P. P.; Bhadbhade, B. J.; Deshpande, N. M.; Sarnaik, S. S. Biodegradation of Organophosphorus Pesticides. Proc. Indian Natl. Sci. Acad. 2004, 70, 57–70.
  • Yuan, S.; Yang, F.; Yu, H.; Xie, Y.; Guo, Y.; Yao, W. Biodegradation of the Organophosphate Dimethoate by Lactobacillus plantarum during Milk Fermentation. Food Chem. 2021, 360, 130042. DOI: https://doi.org/10.1016/j.foodchem.2021.130042
  • Hassal, A. K. Organophosphorous Insecticides. In The Biochemistry and Uses of Pesticides, ELBS: London, 1990; pp 81–124.
  • Chen, Q.; Chen, K.; Ni, H.; Zhuang, W.; Wang, H.; Zhu, J.; He, Q.; He, J. A Novel Amidohydrolase (DmhA) from Sphingomonas sp. that Can Hydrolyze the Organophosphorus Pesticide Dimethoate to Dimethoate Carboxylic Acid and Methylamine. Biotechnol. Lett. 2016, 38, 703–710.
  • Geng, Y.; Jiang, L.; Zhang, Y.; He, Z.; Wang, L.; Peng, Y.; Xu, Y. Dissipation, Pre‐Harvest Interval Estimation, and Dietary Risk Assessment of Carbosulfan, Dimethoate, and Their Relevant Metabolites in Greenhouse Cucumber (Cucumis Sativus L.). Pest Manage. Sci. 2018, 1, 1–29. DOI: https://doi.org/10.1002/ps.4857.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.