Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 3
163
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Bioefficacy evaluation of ferrocenyl chalcones against Meloidogyne incognita and Sclerotium rolfsii infestation in tomato

, , , , , , , & show all

References

  • Curutiu, C.; Lazar, V.; Chifiriuc, M. C. Pesticides and Antimicrobial resistance: from environmental compartments to animal and human infections. In New Pesticides and Soil Sensors; Academic Press: Cambridge, United States, 2017; 373–392.
  • Gonzalez, J. A.; Estevez, B. A. Effect of (E)-chalcone on potato-cyst nematodes (Globodera pallida and G. rostochiensis). J. Agric. Food Chem. 1998, 46, 1163–1165.
  • Belofsky, G.; Percivill, D.; Lewis, K.; Tegos, G. P.; Ekart, J. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J. Nat. Prod. 2004, 67, 481–484.
  • Jayasinghe, L.; Balasooriya, B. A. I. S.; Padmini, W. C.; Hara, N.; Fujimoto, Y. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarpus nobilis. Phytochemistry 2004, 65, 1287–1290.
  • Nielsen, S. F.; Larsen, M.; Boesen, T.; Schonning, K.; Kromann, H. Cationic chalcone antibiotics. design, synthesis and mechanism of action. J. Med. Chem. 2005, 48, 2667–2677.
  • Bag, S.; Ramar, S.; Degani, M. S. Synthesis and biological evaluation of α, β-unsaturated ketone as potential antifungal agents. Med. Chem. Res. 2009, 18, 309–316. DOI: https://doi.org/10.1007/s00044-008-9128-x.
  • Kalirajan, R.; Sivakumar, S. U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. ChemTech. Res. 2009, 1, 27–34.
  • Shakil, N. A.; Singh, M. K.; Kumar, J.; Sathiyendiran, M.; Kumar, G.; Singh, M.; Pandey, R. P.; Pandey, A.; Parmar, V. S. Microwave synthesis and antifungal evaluations of some chalcones and their derived diaryl-cyclohexenones. J. Environ. Sci. Health. B 2010, 45, 524–530. DOI: https://doi.org/10.1080/03601234.2010.493482.
  • Shakil, N. A.; Singh, M. K.; Sathiyendiran, M.; Kumar, J. Microwave accelerated solvent-free synthesis and antifungal evaluations of flavanones. Arch. Phytopathol. Plant Protect. 2011, 44, 1958–1965. DOI: https://doi.org/10.1080/03235408.2010.544467.
  • Shakil, N. A.; Singh, M. K.; Sathiyendiran, M.; Kumar, J.; Padaria, J. C. Microwave synthesis, characterization and bio-efficacy evaluation of novel chalcone based 6-carbethoxy-2-cyclohexen-1-one and 2H-indazol-3-ol derivatives. Eur. J. Med. Chem. 2013, 59, 120–131. DOI: https://doi.org/10.1016/j.ejmech.2012.10.038.
  • Yadav, D. K.; Kaushik, P.; Pankaj, R.; V. S.; Kamil, D.; Khatri, D.; Shakil, N. A. Microwave Assisted synthesis, characterization and biological activities of ferrocenyl chalcones and their QSAR analysis. Front. Chem. 2019, 7, 1–15.
  • Yadav, D. K.; Tripathi, K. P.; Kaushik, P.; Pankaj, Rana, V. S.; Kamil, D.; Khatri, D.; Shakil, N. A. Microwave Assisted Synthesis, Characterization and biological activities of ferrocenyl chalcones and their QSAR analysis: Part II. J. Environ. Sci. Health 2020, 56, 82–97. DOI: https://doi.org/10.1080/03601234.2020.1838828.
  • National Horticulture Board (NHB database). Horticultural Statistics at a Glance. Department of Agriculture Co-operation and Farmers Welfare, Ministry of Agriculture and Farmer Welfare: New Delhi; 2018.
  • Abada, K. A.; Mostafa, S. H.; Mervat, R. Effect of some chemical salts on suppressing the infection by early blight disease of tomato. Egypt. J. Appl. Sci. 2008, 23, 47–58.
  • Zhou, L.; Yuen, G.; Wang, Y.; Wei, L.; Ji, G. Evaluation of bacterial biological control agents for control of root-knot nematode disease on Tomato. Crop Prot. 2016, 84, 8–13. DOI: https://doi.org/10.1016/j.cropro.2015.12.009.
  • Dutta, T. K.; Khan, M. R.; Phani, V. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Curr. Plant Biol. 2019, 17, 17–32. DOI: https://doi.org/10.1016/j.cpb.2019.02.001.
  • Elling, A. A. Major emerging problems with minor Meloidogyne species. Phytopathology 2013, 103, 1092–1102. DOI: https://doi.org/10.1094/PHYTO-01-13-0019-RVW.
  • Trudgill, D. L.; Blok, V. C. Polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 2001, 39, 53–77.
  • Abad, P.; Gouzy, J.; Aury, J.-M.; Castagnone-Sereno, P.; Danchin, E. G. J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V. C.; et al. Genome sequence of the metazoan plant parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. DOI: https://doi.org/10.1038/nbt.1482.
  • Liu, G.; Lin, X.; Xu, S.; Liu, G.; Liu, F.; Mu, W. Screening, identification and application of soil bacteria with nematicidal activity against root‐knot nematode (Meloidogyne incognita) on tomato. Pest Manag. Sci. 2020, 76, 2217–2224. 76,
  • Kumar, V.; Khan, M. R.; Walia, R. K. Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl. Acad. Sci. Lett. 2020, 43, 409–404. DOI: https://doi.org/10.1007/s40009-020-00895-2.
  • Punja, Z. K. The biology, ecology, and control of Sclerotium rolfsii. Annu. Rev. Phytopathol. 1985, 23, 97–127. DOI: https://doi.org/10.1146/annurev.py.23.090185.000525.
  • Abeysinghe, S. Efficacy of combine use of biocontrol agents on control of Sclerotium rolfsii and Rhizoctonia solani of Capsicum annuum. Arch. Phytopathol. Plant Protect. 2009, 42, 221–227. DOI: https://doi.org/10.1080/03235400600999406.
  • Larkin, R. P. Green manures and plant disease management. CAB Rev. 2013, 8, 1–10. DOI: https://doi.org/10.1079/PAVSNNR20138037.
  • Ntalli, N. G.; Caboni, P. Botanical nematicides in the Mediterranean basin. Phytochem. Rev. 2012, 11, 351–359. DOI: https://doi.org/10.1007/s11101-012-9254-4.
  • Oka, Y. Mechanisms of nematode suppression by organic soil amendments – a review. Appl. Soil Ecol. 2010, 44, 101–115. DOI: https://doi.org/10.1016/j.apsoil.2009.11.003.
  • Shakil, N. A.; Sharma, P. K.; Kumar, R.; Saxena, D. B.; Dureja, P. Microwave assisted one pot synthetic method for fungicidal and nematicidal Schiff bases. Pestic. Res. J. 2006, 18, 119–123.
  • Shakil, N. A.; Kumar, J.; Pandey, R. K.; Saxena, D. B. Nematicidal prenylated flavanones from Phyllanthus niruri. Phytochemistry 2008, 69, 759–764. DOI: https://doi.org/10.1016/j.phytochem.2007.08.024.
  • Bose, A.; Shakil, N. A.; Pankaj, Kumar, J.; Singh, M. K. Biocatalytic amidation of carboxylic acids and their antinemic activity. J. Environ. Sci. Health 2010, 45, 254–261. DOI: https://doi.org/10.1080/03601231003613716.
  • Attar, S.; O’Brien, Z.; Alhaddad, H.; Golden, M.; L; Calderon-Urrea, A. Ferrocenyl chalcones versus organic chalcones: a comparative study of their nematocidal activity. Bioorg. Med. Chem. 2011, 19, 2055–2073. DOI: https://doi.org/10.1016/j.bmc.2011.01.048.
  • Kaushik, P.; Shakil, N. A. Pankaj, Biocatalytic amidation of phenolic acids and their antinemic activity. Ind. J. Nematol. 2015, 45, 241–244.
  • Kaushik, P.; Shakil, N. A.; Pankaj.; Kumar, J. Systemic acquired resistance (Sar) study of phenolic acid amides against Meloidogyne Graminicola Infestation in Rice. Ind. J. Nematol. 2019, 49, 1–8.
  • Caboni, P.; Aissani, N.; Demurtas, M.; Ntalli, N.; Onnis, V. Nematicidal activity of acetophenones and chalcones against Meloidogyne incognita and structure activity considerations. Pest Manag. Sci. 2016, 72, 125–130.
  • Kundu, A.; Saha, S.; Walia, S.; Dutta, T. K. Antinemic potentiality of chemical constituents of Eupatorium adenophorum Spreng leaves against Meloidogyne incognita. Natl. Acad. Sci. Lett. 2016, 39, 145–149. DOI: https://doi.org/10.1007/s40009-016-0439-z.
  • Daramola, F.; Afolami, S. O.; Idowu, A. A.; Odeyemi, I. S. Effects of poultry manure and carbofuran soil amendments on soil nematode population and yield of pineapple. Int. J. Agric. Sci. 2013, 3, 298–307.
  • Adegbite, A. A.; Agbaje, G. O. Efficacy of furadan (Carbofuran) in control of root-knot nematode (Meloidogyne incognita Race 2) in hybrid yam varieties in South-Western Nigeria. World J. Agric. Sci. 2007, 3, 256–262.
  • Adekunle, O. K.; Fawole, B. Chemical and non-chemical control of Meloidogyne incognita infecting cowpea under field conditions. Moor J. Agric. Res. 2003, 4, 94–99.
  • Khan, M. R.; Haque, Z.; Kausar, N. Management of the root-knot nematode Meloidogyne graminicola infesting rice in the nursery and crop field by integrating seed priming and soil application treatments of pesticides. Crop Prot. 2014, 63, 15–25. DOI: https://doi.org/10.1016/j.cropro.2014.04.024.
  • Nunes, A. S.; Campos, V. P.; Mascarello, A.; Stumpf, T. R.; Chiaradia-Delatorre, L. D.; Machado, A. R. T.; Junior, H. M. S.; Yunes, R. A.; Nunes, R. J.; Oliveira, D. F. Activity of chalcones derived from 2,4,5-trimethoxybenzaldehyde against Meloidogyne exigua and in silico interaction of one chalcone with a putative caffeic acid 3-O-methyltransferase from Meloidogyne incognita. Exp. Parasitol. 2013, 135, 661–668.
  • Silva, F. J.; Campos, V. P.; Oliveira, D. F.; Gomes, V. A.; Barros, A. F.; Din, Z. U.; Rodrigues, Filho, E. Chalcone analogues: synthesis, activity against Meloidogyne incognita, and in silico interaction with Cytochrome P450. J. Phytopathol. 2019, 167, 197–208. DOI: https://doi.org/10.1111/jph.12787.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.