Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 3
159
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Insights into the ecotoxicological perturbations induced by the biocide Abamectin in the white snail, Theba pisana

ORCID Icon &

References

  • Özkara, A.; Akyıl, D.; Konuk, M. Pesticides, Environmental Pollution and Health. In Environmental Health Risk-Hazardous Factors to Living Species, Larramendy, M.L.; Soloneski, S., Eds; IntechOpen, London, UK, 2016. DOI: https://doi.org/10.5772/63094.
  • Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G. P. S.; Handa, N.; Kohli, S. K.; Yadav, P.; Bali, A. S.; Parihar, R. D.; Dar, O.I.; Singh, K.; Jasrotia, S.; Bakshi, P.; Ramakrishnan, M.; Kumar, S.; Bhardwaj, R.; Thukral, A. K. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1–16. DOI: https://doi.org/10.1007/s42452-019-1485-1.
  • Boxall, A. B. A.; Fogg, L. A.; Blackwell, P. A.; Kay, P.; Pemberton, E. J.; Croxford, A. Veterinary Medicines in the Environment. Rev. Environ. Contam. Toxicol. 2004, 180, 1–91.
  • Sánchez-Bayo, F. Impacts of Agricultural Pesticides on Terrestrial Ecosystems. In Ecological Impacts of Toxic Chemicals; Sánchez-Bayo, F.; van den Brink, P.J.; Mann, R.M., Eds.; Bentham Science Publishers Ltd, Sharjah, United Arab Emirates, 2011; Chapter 4; pp 63–87.
  • Bai, S. H.; Ogbourne, S. Eco-Toxicological Effects of the Avermectin Family with a Focus on Abamectin and Ivermectin. Chemosphere 2016, 154, 204–214. DOI: https://doi.org/10.1016/j.chemosphere.2016.03.113.
  • Ishaaya, I.; Kontsedalov, S.; Horowitz, A. R. Emamectin a Novel Insecticide for Controlling Field Crop Pests. Pest Manag. Sci. 2002, 58, 1091–1095.
  • Radwan, M. A. Comparative Toxic Effects of Some Pesticides with Different Modes of Action against the Land Snail, Theba Pisana. Int. J. Zool. Investig. 2016, 2, 170–176.
  • Radwan, M. A.; Saad, A. S. A.; Mesbah, H. A.; Ibrahim, H. S.; Khalil, M. S. Investigating the in Vitro and in Vivo Nematicidal Performance of Structurally Related Macrolides against the Root-Knot Nematode, Meloidogyne incognita. Hellenic Plant Prot. J. 2019b, 12, 24–37. DOI: https://doi.org/10.2478/hppj-2019-0005.
  • Pitterna, T.; Cassayre, J.; Hüter, O. F.; Jung, P. M. J.; Maienfisch, P.; Kessabi, F. M.; Quaranta, L.; Tobler, H. New Ventures in the Chemistry of Avermectins. Bioorg. Med. Chem. 2009, 17, 4085–4095.
  • Fisher, M. H.; Mrozik, M. Ivermectin and Abamectin; Springer Verlag: New York, 1989; pp 1–23.
  • Bloomquist, J. R. Chloride Channels as Tools for Developing Selective Insecticides. Arch. Insect Biochem. Physiol. 2003, 54, 145–156.
  • Lumaret, J. P.; Errouissi, F.; Floate, K.; Römbke, J.; Wardhaugh, K. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments. Curr. Pharm. Biotechnol. 2012, 13, 1004–1060.
  • Halley, B. A.; Jacob, T. A.; Lu, A. Y. H. The Environmental Impact of the Use of Ivermectin: Environmental Effects and Fate. Chemosphere 1989, 18, 1543–1563. DOI: https://doi.org/10.1016/0045-6535(89)90045-3.
  • Erzen, N. K.; Kolar, L.; Flajs, V. C.; Kuzner, J.; Marc, I.; Pogacnik, M. Degradation of Abamectin and Doramectin on Sheep Grazed Pasture. Ecotoxicology 2005, 14, 627–635. DOI: https://doi.org/10.1007/s10646-005-0012-x.
  • Römbke, J.; Duis, K. Proposal for a Monitoring Concept for Veterinary Medicinal Products with PBT Properties, Using Parasiticides as a Case Study. Toxics 2018, 6, 14. DOI: https://doi.org/10.3390/toxics6010014.
  • ECHA (European Chemicals Agency). Background document to the opinion of the committee for risk assessment on a proposal for harmonised classification and labeling of abamectin and avermectin B1a. Finland, 2010.
  • EMA (European Medicines Agency). Guideline on environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL6 and GL38. EMEA/CVMP/ERA/418282/2005-Rev.1 Corr.1. London, United Kingdom, 2016.
  • de Vaufleury, A.; Coeurdassier, M.; Pandard, P.; Scheifler, R.; Lovy, C.; Crini, N.; Badot, P. M. How Terrestrial Snails Can Be Used in Risk Assessment of Soils. Environ. Toxicol. Chem. 2006, 25, 797–806.
  • Regoli, F.; Gorbi, S.; Fattorini, D.; Tedesco, S.; Notti, A.; Machella, N.; Bocchetti, R.; Benedetti, M.; Piva, F. Use of the Land Snail Helix Aspersa as Sentinel Organism for Monitoring Ecotoxicologic Effects of Urban Pollution: An Integrated Approach. Environ. Health Perspect. 2006, 114, 63–69. [Database] DOI: https://doi.org/10.1289/ehp.8397.
  • Radwan, M. A.; El-Gendy, K. S.; Gad, A. F. Biomarkers of Oxidative Stress in the Land Snail, Theba Pisana for Assessing Ecotoxicological Effects of Urban Metal Pollution. Chemosphere 2010, 79, 40–46. DOI: https://doi.org/10.1016/j.chemosphere.2010.01.056.
  • Nicolai, A.; Ansart, A. Conservation at a Slow Pace: terrestrial Gastropods Facing Fast‐Changing Climate. Conservation Physiology 2017, 5, cox007. DOI: https://doi.org/10.1093/conphys/cox007.
  • Radwan, M. A.; El-Gendy, K. S.; Gad, A. F.; Khamis, A. E.; Eshra, E. H. Ecotoxicological Biomarkers as Investigating Tools to Evaluate the Impact of Acrylamide on Theba Pisana Snails. Environ. Sci. Pollut. Res. Int. 2019a, 26, 14184–14193.
  • El-Gendy, K. S.; Radwan, M. A.; Gad, A. F.; Khamis, A. E.; Eshra, E. H. Use of Multiple Endpoints to Investigate the Ecotoxicological Effects of Abamectin and Thiamethoxam on Theba Pisana Snails. Ecotoxicol. Environ. Saf. 2019a, 167, 242–249.
  • Hamza-Chaffai, A. Usefulness of Bioindicators and Biomarkers in Pollution Biomonitoring. Int. J. Biotech. Well. Indus. 2014, 3, 19–26. DOI: https://doi.org/10.6000/1927-3037.2014.03.01.4.
  • Van der Oost, R.; Beyer, J.; Vermeulen, N. P. E. Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review. Environ. Toxicol. Pharmacol. 2003, 13, 57–149.
  • Radwan, M. A.; El-Gendy, K. S.; Gad, A. F. Biomarker Responses in Terrestrial Gastropods Exposed to Pollutants: A Comprehensive Review. Chemosphere 2020, 257, 127218. DOI: https://doi.org/10.1016/j.chemosphere.2020.127218.
  • APC. Agricultural Pesticides Committee. The website of Agricultural Pesticides Committee (APC), the Ministry of Agriculture and Land Reclamation, Egypt. 2021, http://www.apc.gov.eg (accessed on June 10, 2021).
  • Radwan, M. A.; El-Wakil, H. B.; Osman, K. A. Toxicity and Biochemical Impact of Certain Oxime Carbamate Pesticides against Terrestrial Snail, Theba Pisana (Müller). J. Environ. Sci. Health, Part B 1992, 27, 759–773. DOI: https://doi.org/10.1080/03601239209372811.
  • Gad, A. F.; Radwan, M. A.; EL-Gendy, K. S.; Eshra, E. H.; Seehy, M. A.; Khamis, A. Genotoxic Potential of Some Pollutants in Theba pisana Snails Using the Micronucleus Test. International Journal of Zoological Investigations 2016, 2, 197–205.
  • El-Gendy, K. S.; Radwan, M. A.; Gad, A. F.; Khamis, A. E.; Eshra, E. H. Physiological Traits of Land Snails Theba Pisana as Simple Endpoints to Assess the Exposure to Some Pollutants. Environ. Sci. Pollut. Res. Int. 2019b, 26, 6922–6930. DOI: https://doi.org/10.1007/s11356-019-04180-8.
  • Radwan, M. A.; Mohamed, M. S. Imidacloprid Induced Alterations in Enzyme Activities and Energy Reserves of the Land Snail, Helix Aspersa. Ecotoxicol. Environ. Saf. 2013, 95, 91–97.
  • Finney, D. J. Probit Analysis, 3rd ed.; Cambridge University Press: Cambridge, U.K., 1971.
  • Van Handel, E. Estimation of Glycogen in Small Amount of Tissue. Anal. Biochem. 1965, 11, 256–265. DOI: https://doi.org/10.1016/0003-2697(65)90013-8.
  • Knight, J. A.; Rawle, J. M.; Anderson, S. Chemical Basis of Sulfo-Phospho-Vanillin Reaction for Estimating Total Serum Lipids. Clin. Chem. 1972, 18, 199–202. DOI: https://doi.org/10.1093/clinchem/18.3.199.
  • Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275.
  • Bowen, S. H.; Lutz, E. V.; Ahlgren, M. O. Dietary protein and energy as determinants of food quality: Trophic strategies compared. Ecology 76, 899–907, In Physiological Energetics; Hoar, TTS; Randall, WS; Brett, DJ, Eds.; Academic Press: New York, USA, 1995; pp 279–352. DOI: https://doi.org/10.2307/1939355.
  • Vessey, D. A.; Boyer, T. D. Differential Activation and Inhibition Ofdifferent Forms of Rat Liver Glutathione S-Transferase by the Herbi-Cides 2,4-Dichloro Phenoxy Acetate (2,4-D) and 2,4,S Trichlorophenoxy Acetate (2,4,S-T). Toxicol. Appl. Pharmacol. 1984, 73, 492–499. DOI: https://doi.org/10.1016/0041-008X(84)90101-7.
  • Szasz G. New substrates for measuring gamma-glutamyl transpeptidase activity. Z. Klin. Chem. Klin. Biochem. 1974; 12(5), 228.
  • McComb, R. B. The Measurement of Lactate Dehydrogenase. In Clinical and Analytical Concepts in Enzymology, Homburger, HA, Skokie, IL, Eds., College of American Pathologists: New York, 1983; pp 157–171.
  • Reitman, S.; Frankel, S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63.
  • Costat program. Microcomputer Program Analysis. CoHort software, Version 2.6, Monterey, CA, USA, 2002.
  • Gunstone, T.; Cornelisse, T.; Klein, K.; Dubey, A.; Donley, N. Pesticides and Soil Invertebrates: A Hazard Assessment. Front. Environ. Sci. 2021, 9, 643847. DOI: https://doi.org/10.3389/fenvs.2021.643847.
  • Gabr, W. M.; Youssef, A. S.; Khidr, F. K. Molluscicidal Effect of Certain Compounds against Two Land Snail Species, Monacha Obstructa and Eobania Vermiculata under Laboratory and Field Conditions. J. Agric. Res. 2006, 84, 43–50.
  • Kandil, M. A.; El-Deeb, H. I.; Eweis, E. A.; Gabr, W. M.; Mobarak, S. A. Effect of Acetylsalicylic Acid on the Physiological Role of Mucus Gland of Land Snail Species. Egypt J. Agric. Res. 2014, 92, 53–73.
  • Abdelgalil, G. M.; Abou-Elnasr, H. S.; Khalil, M. S.; Abouhamer, M. S.; Osman, A. M.; Abdallah, E. A. M. Molluscicidal Toxicity of Abamectin against Eobania Vermiculata and Theba Pisana in Vivo and the Estimation of GABA-Transaminase Activity by HPLC. J. Biopest. 2018, 11, 161–168.
  • Hussein, M. A.; Sabry, A. K. H. Assessment of Some New Pesticides as Molluscicides against the Adult and Eggs of Chocolate Banded Snail, Eobania Vermiculata. Bull. Natl. Res. Cent. 2019, 43, 75. DOI: https://doi.org/10.1186/s42269-019-0118-6.
  • Airey, W. J.; Henderson, I. F.; Pickett, J. A.; Scott, G. C.; Stephenson, J. W.; Woodcock, C. M. Novel Chemical Approaches to Mollusc Control (p. 301–307). In Slugs and Snails in World Agriculture; Henderson, I., Ed.; Monograph 41, British Crop Protection Council, Thornton Heath, UK.
  • Kozłowski, J.; Kałuski, T.; Jaskulska, M.; Kozłowska, M. Initial Evaluation of the Effectiveness of Selected Active Substances in Reducing Damage to Rape Plants Caused by Arion Lusitanicus (Gastropoda, Pulmonata, Arionidae). J. Plant Prot. Res. 2010, 50, 520–526. DOI: https://doi.org/10.2478/v10045-010-0086-1.
  • Moreira, R. A.; de Araujo, G. S.; Silva, A. R. R. G.; Daam, M. A.; Rocha, O.; Soares, A. M. V. M.; Loureiro, S. Effects of Abamectin-Based and Difenoconazole-Based Formulations and Their Mixtures in Daphnia Magna: A Multiple Endpoint Approach. Ecotoxicology 2020, 29, 1486–1499. DOI: https://doi.org/10.1007/s10646-020-02218-z.
  • Dallinger, R.; Berger, B.; Triebskorn, R.; Kohler, H. Soil Biology and Ecotoxicology. In The Biology of Terrestrial Molluscs; Barker, G.M., Ed.; CAB International: Oxon, UK, 2002; pp 489–525.
  • Yazdani, E.; Sendi, J. J.; Aliakbar, A.; Senthil-Nathan, S. Effect of Lavandula Angustifolia Essential Oil against Lesser Mulberry Pyralid Glyphodes Pyloalis Walker (Lep: Pyralidae) and Identification of Its Major Derivatives. Pestic Biochem. Physiol. 2013, 107, 250–257. DOI: https://doi.org/10.1016/j.pestbp.2013.08.002.
  • Radwan, M. A.; Essawy, A. E.; Abdelmeguied, N. E.; Hamed, S. S.; Ahmed, A. E. Biochemical and Histochemical Studies on the Digestive Gland of Eobania Vermiculata Snails Treated with Carbamate Pesticides. Pestic Biochem. Physiol. 2008, 90, 154–167. DOI: https://doi.org/10.1016/j.pestbp.2007.11.011.
  • Shaurub, E. S. H.; El-Aziz, N. M. A. Biochemical Effects of Lambda-Cyhalothrin and Lufenuron on Culex pipiens L. (Diptera: Culicidae). Int. J. Mosq. Res. 2015, 2, 122–126.
  • Megahed, M. M. M.; El-Tawil, M. F.; El-Bamby, M. M. M.; Abouamer, W. L. Biochemical Effects of Certain Bioinsecticides on Cotton Leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Res. J. Agric. Biol. Sci. 2013, 9, 308–317.
  • Tendulkar, M.; Kulkarni, A. Cypermethrin-Induced Toxic Effect on Glycogen Metabolism in Estuarine Clam, Marcia Opima (Gmelin, 1791) of Ratnagiri Coast, Maharashtra. J. Toxicol. 2012, 2012, 576804. DOI: https://doi.org/10.1155/2012/576804.
  • Ansaldo, M.; Nahabedian, D. E.; Holmes-Brown, E.; Agote, M.; Ansay, C. V.; Verrengia Guerrero, N. R.; Wider, E. A. Potential Use of Glycogen Level as Biomarker of Chemical Stress in Biomphalaria Glabrata. Toxicology 2006, 224, 119–217. DOI: https://doi.org/10.1016/j.tox.2006.04.037.
  • Riaz, T.; Shakoori, F. R.; Mansoor, H.; Khan, S.; Saleem, M. A. Efficacy of Mixture of Pesticides on the Mortality and Energy Reserves of a Stored Grain Pest Trogoderma Granarium Everts. PJZ. 2019, 51, 2297–2309. DOI: https://doi.org/10.17582/journal.pjz/2019.51.6.2297.2309.
  • Remia, K. M.; Logaswamy, S.; Logankumar, K.; Rajmohan, D. Effect of an Insecticides (Monocrotophos) on Some Biochemical Constituents of the Fish Tilipia Mossambica. Poll Res 2008, 27, 523–526.
  • Rambabu, J. P.; Rao, M. B. Effect of an Organochlorine and Three Organophosphate Pesticides on Glucose, Glycogen, Lipid and Protein Contents in Tissues of the Freshwater Snail, Bellamya Dissimilis (Müller). Bull. Environ. Contam. Toxicol. 1994, 53, 142–148.
  • El-Shafey, A. A. M.; Seliem, M. M. E.; El-Mahrouky, F.; Gabr, W. M.; Kandil, R. A. Some Physiological and Biochemical Effects of Oshar Extract and Abamectin Biocide on Male Albino Rats. J. Am. Sci. 2011, 7, 254–261.
  • Al-Kahtani, M. A. Effect of an Insecticide Abamectin on Some Biochemical Characteristics of Tilapia Fish (Oreochromis Niloticus). Am. J. Agric. Biol. Sci. 2011, 6, 62–68. DOI: https://doi.org/10.3844/ajabssp.2011.62.68.
  • Nikinmaa, M.; Anttila, K. Individual Variation in Aquatic Toxicology: not Only Unwanted Noise. Aquat. Toxicol. 2019, 207, 29–33.
  • Szabo, B.; Lang, Z.; Kover, S.; Bakonyi, G. The Inter-Individual Variance Can Provide Additional Information for the Ecotoxicologists beside the Mean. Ecotoxicol. Environ. Saf. 2021, 217, 112260.
  • Elia, A. C.; Galarini, R.; Martin Dörr, A. J.; Taticchi, M. I. Heavy Metal Contamination and Antioxidant Response of a Freshwater Bryozoan (Lophopus Crystallinus Pall., Phylactolaemata). Ecotoxicol. Environ. Saf. 2007, 66, 188–194.
  • Saravana Bhavan, P.; Geraldine, P. Histopathology of the Hepatopancreas Gills of the Prawn, Macrobrachium Malcolmsonii Exposed to Endosulfan. Aquat. Toxicol. 2000, 50, 331–339. DOI: https://doi.org/10.1016/S0166-445X(00)00096-5.
  • Ma, J.; Zhou, C.; Li, Y.; Li, X. Biochemical Responses to the Toxicity of the Biocide Abamectin on the Fresh Water Snail Physa Acuta. Ecotoxicol. Environ. Saf. 2014, 101, 31–35. DOI: https://doi.org/10.1016/j.ecoenv.2013.12.009.
  • Özer, S.; Ayfer, T.; Gülden, O.; Sule, C.; Gazi, C.; Nursal, G.; Göksel, S. Protective Effect of Resveratrol against Naphthalene-Induced Oxidative Stress in Mice. Ecotoxicol. Environ. 2008, 71, 301–308.
  • Lee, D. H.; Blomhoff, R.; Jr.; Jacobs, D. R. Is Serum Gamma Glutamyl Transferase a Marker of Oxidative Stress? Free Radic. Res. 2004, 38, 535–539.
  • Banerjee, B. D.; Seth, V.; Bhattacharya, A.; Pasha, S. T.; Chakraborty, A. K. Biochemical Effects of Some Pesticides on Lipid Peroxidation and Free-Radical Scavengers. Toxicol. Lett. 1999, 107, 33–47. DOI: https://doi.org/10.1016/S0378-4274(99)00029-6.
  • Khaldoun-Oularbi, H.; Nacira, Z.; Camille, R.; Hadjer, A.; Mohamed, R. E.; Nadia, D. Vertimec® Mediates Plasma Biochemical Changes and Histopathological Damage in the Kidney of Rats (Rattus norvegicus). J. Int. Sci. Publ. 2017, 5, 622– 630.
  • El-Shenawy, N. S. Effects of Insecticides Fenitrothion, Endosulfan and Abamectin on Antioxidant Parameters of Isolated Rat Hepatocytes. Toxicol. In Vitro 2010, 24, 1148–1157.
  • Kendig, D. M.; Tarloff, J. B. Inactivation of Lactate Dehydrogenase by Several Chemicals: Implications for in Vitro Toxicology Studies. Toxicol. In Vitro 2007, 21, 125–132.
  • Müller, M.; Mentel, M.; van Hellemond, J. J.; Henze, K.; Woehle, C.; Gould, S. B.; Yu, R. Y.; van der Giezen, M.; Tielens, A. G. M.; Martin, W. F. Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes. Microbiol. Mol. Biol. Rev. 2012, 76, 444–495.
  • Amin, A.; Hamza, A. A. Oxidative Stress Mediates Drug-Induced hepatotoxicity in Rats: A Possible Role of DNA Fragmentation. Toxicology 2005, 208, 367–375. DOI: https://doi.org/10.1016/j.tox.2004.11.039.
  • Umminger, B. L. Relation of Whole Blood Sugar Concentrations in Vertebrates to Standard Metabolic Rate. Compar. Biochem. Physiol. 1977, 56, 457–460. DOI: https://doi.org/10.1016/0300-9629(77)90267-5.
  • El-Kabbany, A. I.; Hamza, R. S.; Ismail, S. M.; Ghaled, K. I. Effect of Abamectin on Biochemical, Immunological and Histological Parameters of Hamster Infected with Schistosoma mansoni. Int. J. Chin. Med. 2017, 1, 92–101.
  • Farag, S. R. M.; Morsi, G. M. A.; Mohamed, S. A. E. Insecticidal Activity and Biochemical Effects of Two Bioinsecticidal on Bactrocera Zonata (SAUNDERS) (Diptera: Tephritidae). Egypt Acad. J. Biol. Sci. 2017, 10, 17–23.
  • Hamza, S. A.; Abdelgalil, G. M.; Abdallah, E. A. M.; Kassem, F. A.; Asran, A. A. Effects of Abamectin on Glutamate Decarboxylase, Alanine Aminotransferase and Aspartate Aminotransferase of Land Snails. IJZI 2020, 6, 311–320. DOI: https://doi.org/10.33745/ijzi.2020.v06i02.010.
  • Hong, Y.; Huang, Y.; Yang, X.; Zhang, J.; Li, L.; Huang, Q.; Huang, Z. Abamectin at Environmentally-Realistic Concentrations Cause Oxidative Stress and Genotoxic Damage in Juvenile Fish (Schizothorax Prenanti). Aquat. Toxicol. 2020, 225, 105528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.