Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 9
150
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Bayat, M.; Hassanzadeh-Khayyat, M.; Mohajeri, S. A. Determination of Diazinon Pesticide Residue in Tomato Fruit and Tomato Paste by Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography Analysis. Food Anal. Methods 2015, 8, 1034–1041. DOI: 10.1007/s12161-014-9984-6.
  • Zahirifar, F.; Rahimnejad, M.; Abdulkareem, R. A.; Najafpour, G. Determination of Diazinon in Fruit Samples Using Electrochemical Sensor Based on Carbon Nanotubes Modified Carbon Paste Electrode. Biocatal. Agric. Biotechnol. 2019, 20, 101245. DOI: 10.1016/j.bcab.2019.101245.
  • Hassani, S.; Akmal, M. R.; Salek-Maghsoudi, A.; Rahmani, S.; Ganjali, M. R.; Norouzi, P.; Abdollahi, M. Novel Label-Free Electrochemical Aptasensor for Determination of Diazinon Using Gold Nanoparticles-Modified Screen-Printed Gold Electrode. Biosens. Bioelectron. 2018, 120, 122–128. DOI: 10.1016/j.bios.2018.08.041.
  • Slotkin, T. A.; Skavicus, S.; Ko, A.; Levin, E. D.; Seidler, F. J. Perinatal Diazinon Exposure Compromises the Development of Acetylcholine and Serotonin Systems. Toxicology 2019, 424, 152240. DOI: 10.1016/j.tox.2019.152240.
  • Marahel, F.; Niknam, L.; Pournamdari, E.; Geramizadegan, A. Application of Electrochemical Sensor Based on Nanosheets G-C3N4/CPE by Square Wave Anodic Stripping Voltammetry Method to Measure Residual Amounts of Toxic Bentazon in Water Samples. J. Iran. Chem. Soc. 2022, 19, 1–9. DOI: 10.1007/s13738-022-02531-w.
  • Hadichegeni, S.; Goliaei, B.; Taghizadeh, M.; Davoodmanesh, S.; Taghavi, F.; Hashemi, M. Characterization of the Interaction between Human Serum Albumin and Diazinon via Spectroscopic and Molecular Docking Methods. Hum. Exp. Toxicol. 2018, 37, 959–971. DOI: 10.1177/0960327117741752.
  • Malhat, F.; Saber, E. S.; Abd El-Salam, S.; Anagnostopoulos, C.; Tawfic Ahmed, M. Dissipation Behavior of the Fungicide Tebuconazole in Strawberries Using Liquid Chromatograph Tandem Mass Spectrometry (LC-MS/MS), a Dryland Ecosystem–Based Study. Int. Environ. Anal. Chem. 2020, 100, 1–19. DOI: 10.1080/03067319.2020.1830983.
  • Davoodi, D.; Hassanzadeh-Khayyat, M.; Asgharian Rezaei, M.; Mohajeri, S. A. Preparation, Evaluation and Application of Diazinon Imprinted Polymers as the Sorbent in Molecularly Imprinted Solid-Phase Extraction and Liquid Chromatography Analysis in Cucumber and Aqueous Samples. Food Chem. 2014, 158, 421–428. DOI: 10.1016/j.foodchem.2014.02.144.
  • Behbahani, M.; Veisi, A.; Omidi, F.; Yeganeh Badi, M.; Noghrehabadi, A.; Esrafili, A.; Sobhi, H. R. The Conjunction of a New Ultrasonic-Assisted Dispersive Solid-Phase Extraction Method with HPLC-DAD for the Trace Determination of Diazinon in Biological and Water Media. New J. Chem. 2018, 42, 4289–4296. DOI: 10.1039/C7NJ03788K.
  • Rezaei Kahkha, M. R.; Kaykhaii, M.; Rezaei Kahkha, B.; Shafee-Afarani, M. Determination of Diazinon in Environmental Samples Using Modified Multi-Walled Carbon Nanotubes as Pipette-Tip Solid Phase Extraction Sorbent. Iran. J. Anal. Chem. 2017, 4, 10–16. https://ijac.journals.pnu.ac.ir/article_4144.html.
  • Geramizadegan, A.; Ghazanfari, D.; Amiri, A. Determination of Amount Herbicide Toxic Fenpyroximate in Surface Water by Analysis Molecularly Imprinted Solid Phase Extraction Method (MIPs), and Relative Error Assessment Using Artificial Neural Network Model. Int. Environ. Anal. Chem. 2022, 102, 1–17. DOI: 10.1080/03067319.2021.2001465.
  • Sohrabi, M. R.; Jamshidi, S.; Esmaeilifar, A. Cloud Point Extraction for Determination of Diazinon: Optimization of the Effective Parameters Using Taguchi Method. Chemom. Intell. Lab. Syst. 2012, 110, 49–54. DOI: 10.1016/j.chemolab.2011.09.009.
  • Barazandeh, A.; Jamali, H. A.; Karyab, H. Equilibrium and Kinetic Study of Adsorption of Diazinon from Aqueous Solutions by Nano-Polypropylene-Titanium Dioxide: Optimization of Adsorption Based on Response Surface Methodology (RSM) and Central Composite Design (CCD). Korean J. Chem. Eng. 2021, 38, 2436–2445. DOI: 10.1007/s11814-021-0863-8.
  • Marahel, F.; Niknam, L. Enhanced Fluorescent Sensing Probe via PbS Quantum Dots Functionalized with Gelatin for Sensitive Determination of Toxic Bentazon in Water Samples. Drug Chem. Toxicol. 2021, 44, 1–9. DOI: 10.1080/01480545.2021.1963761.
  • Tafreshi, A.; Fatahi, F.; Ghasemi, Z.; Taherian, S. F.; Esfandiari, A. N. Ultrasensitive Fluorescent Detection of Pesticides in Real Sample by Using Green Carbon Dots. PLoS One 2020, 15, 1–17. DOI: 10.1371/journal.pone.0230646.
  • Khaledian, S.; Noroozi-Aghideh, A.; Kahrizi, D.; Moradi, S.; Abdoli, M.; Haji Ghasemalian, A.; Heidari, M. F. Rapid Detection of Diazinon as an Organophosphorus Poison in Real Samples Using Fluorescence Carbon Dots. Inorg. Chem. Commun. 2021, 130, 108676. DOI: 10.1016/j.inoche.2021.108676.
  • Qiu, Z.; Shu, J.; He, Y.; Lin, Z.; Zhang, K.; Lv, S.; Tang, D. CdTe/CdSe Quantum Dot-Based fluorescent Aptasensor with Hemin/G-Quadruplex DNzyme for Sensitive Detection of Lysozyme Using Rolling Circle Amplification and Strand Hybridization. Biosens. Bioelectron. 2017, 87, 18–24. DOI: 10.1016/j.bios.2016.08.003.
  • Zhang, K. Y.; Lv, S. Z.; Lin, Z. Z.; Tang, D. CdS:Mn Quantum Dot-Functionalized g-C3N4 Nanohybrids as Signal-Generation Tags for Photoelectrochemical Immunoassay of Prostate Specific Antigen Coupling DNAzyme Concatamer with Enzymatic Biocatalytic Precipitation. Biosens. Bioelectron. 2017, 95, 34–40. DOI: 10.1016/j.bios.2017.04.005.
  • Shu, J.; Tang, D. Current Advances in Quantum-Dots-Based Photoelectrochemical Immunoassays. Chem. Asian J. 2017, 12, 2780–2789. DOI: 10.1002/asia.201701229.
  • Cai, G.; Yu, Z.; Ren, R.; Tang, D. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS QDs/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632–639. DOI: 10.1021/acssensors.7b00899.
  • Lin, Z.; Lv, S.; Zhang, K.; Tang, D. Optical Transformation of a CdTe Quantum Dot-Based Paper Sensor for a Visual Fluorescence Immunoassay Induced by Dissolved Silver Ions. J. Mater. Chem. B 2017, 5, 826–833. DOI: 10.1039/C6TB03042D.
  • Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. DOI: 10.1021/acs.analchem.7b00989.
  • Shokry, A.; Khalil, M.; Ibrahim, H.; Soliman, M.; Ebrahim, S. Acute Toxicity Assessment of Polyaniline/Ag Nanoparticles/Graphene Oxide Quantum Dots on Cypridopsis vidua and Artemia salina. Sci. Rep. 2021, 11, 5336. DOI: 10.1038/s41598-021-84903-5.
  • Zhao, Y.; Ma, Y.; Li, H.; Wang, L. Composite QDs@ MIP Nanospheres for Specific Recognition and Direct Fluorescent Quantification of Pesticides in Aqueous Media. Anal. Chem. 2012, 84, 386–395. DOI: 10.1021/ac202735v.
  • Adel, R.; Ebrahim, S.; Shokry, A.; Soliman, M.; Khalil, M. Nanocomposite of CuInS/ZnS and Nitrogen-Doped Graphene Quantum Dots for Cholesterol Sensing. ACS Omega 2021, 6, 2167–2176. DOI: 10.1021/acsomega.0c05416.
  • Ensafi, A. A.; Kazemifard, N.; Rezaei, B. Development of a Nano Plastic Antibody for Determination of Propranolol Using CdTe Quantum Dots. Sens. Actuators, B 2017, 252, 846–853. DOI: 10.1016/j.snb.2016.9.175.
  • Das, A.; Wai, C. M. Ultrasound-Assisted Synthesis of PbS Quantum Dots Stabilized by 1, 2-Benzenedimethanethiol and Attachment to Single-Walled Carbon Nanotubes. Ultrason. Sonochem. 2014, 21, 892–900. DOI: 10.1016/j.ultsonch.2013.08.025.
  • Hatamie, A.; Marahel, F.; Sharifat, A. Green Synthesis of Graphitic Carbon Nitride Nanosheet (g-C3N4) and Using It as a Label-Free Fluorosensor for Detection of Metronidazole via Quenching of the Fluorescence. Talanta 2018, 176, 518–525. DOI: 10.1016/j.talanta.2017.08.059.
  • Bouroumand, S.; Marahel, F.; Khazali, F. Designed a Fluorescent Method by Using PbS with Gelatin via Quantum Dots for the Determination of Phenylpropanolamine Drug in Human Fluid Samples. J. Appl. Chem. Res. 2022, 16, 57–71. https://jacr.kiau.ac.ir/?_action=xml&article=690735.
  • Mart’yanova, E. G.; Brichkin, S. B.; Spirin, M. G.; Razumov, V. F. Hanges in Luminescence of Semiconductor Colloidal Quantum Dots CdSe@CdS by Replacement of Hydrophobic Ligands with 1-Thioglycerol. High Energy Chem. 2017, 51, 350–355. DOI: 10.1134/S0018143917050101.
  • Bouroumand, S.; Marahel, F.; Khazali, F. Determining the Amount of Metronidazole Drug in Blood and Urine Samples with the Help of PbS Sensor Functionalized with Gelatin as a Fluorescence-Enhanced Probe. Iran J. Anal. Chem. 2020, 7, 47–56. DOI: 10.30473/IJAC.2021.56671.1175.
  • Cai, G.; Yu, Z.; Tong, P.; Tang, D. Ti3C2 MXene Quantum Dot-Encapsulated Liposomes for Photothermal Immunoassays Using a Portable near-Infrared Imaging Camera on a Smartphone. Nanoscale 2019, 11, 15659–15667. DOI: 10.1039/C9NR05797H.
  • Azab, H. A.; Kamel, R. M. Sensitive and Selective Fluorescent Chemosensor for the Detection of Some Organophosphorus Pesticides Using Luminescent Eu (III) Complex. J. Photochem. Photobiol. A 2016, 321, 33–40. S1010-6030(15)30238-0 DOI: 10.1016/j.jphotochem.2016.01.009.
  • Can, M. H. T.; Kadam, U. S.; Trinh, K. H.; Cho, Y.; Lee, H.; Kim, Y.; Kim, S.; Kang, C. H.; Kim, S. H.; Chung, W. S.; et al. Engineering Novel Aptameric Fluorescent Biosensors for Analysis of the Neurotoxic Environmental Contaminant Insecticide Diazinon from Real Vegetable and Fruit Samples. Front. Biosci. (Landmark Ed.) 2022, 27, 92. DOI: 10.31083/j.fbl2703092.
  • Bouroumand, S.; Marahel, F.; Khazali, F. Removal of Yellow HE4G Dye from Aqueous Solutions Using Synthesized Mn-Doped PbS (PbS:Mn) Nanoparticles. DWT 2021, 223, 380–392. DOI: 10.5004/dwt.2021.27112.
  • Shyju, T. S.; Anandhi, S.; Sivakumar, R.; Gopalakrishnan, R. Studies on Lead Sulfide (PbS) Semiconducting Thin Films Deposited from Nanoparticles and Its NLO Application. Int. J. Nanosci. 2014, 13, 1450001. DOI: 10.1142/S0219581X1450001X.
  • Yang, X.; Liu, M.; Yin, Y.; Tang, F.; Xu, H.; Liao, X. Green, Hydrothermal Synthesis of Fluorescent Carbon Nanodots from Gardenia, Enabling the Detection of Metronidazole in Pharmaceuticals and Rabbit Plasma. Sensors 2018, 18, 964. DOI: 10.3390/s18040964.
  • Khodadoust, S.; Sharif Talebiyan pour, M. Extraction and Determination of Diazinon Poison by Nizns-C Nanoparticles by Ultrasound Microextraction and Experimental Design from Environmental Waters. J. Environ. Sci. Technol. 2021, 23, 85–98. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=901534.
  • Juskowiak, B. Nucleic Acid-Based Fluorescent Probes and Their Analytical Potential. Anal. Bioanal. Chem. 2011, 399, 3157–3176. DOI: 10.1007/s00216-010-4304-5.
  • Liang, S. S.; Qi, L.; Zhang, R. L.; Jin, M.; Zhang, Z. Q. Ratiometric Fluorescence Biosensor Based on CdTe Quantum and Carbon Dots for Double Strand DNA Detection. Sens. Actuators 2017, 244, 585–590. DOI: 10.1016/j.snb.2017.01.032.
  • Levine, M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front. Chem. 2021, 9, 616815. DOI: 10.3389/fchem.2021.616815.
  • Mohammadzaheri, R.; M Ansari Dogaheh, M.; Kazemipour, M.; Soltaninejad, K. Experimental Central Composite Design-Based Dispersive Liquid-Liquid Microextraction for HPLC-DAD Determination of Diazinon in Human Urine Samples: method Development and Validation. Arh. Hig. Rada Toksikol. 2020, 71, 48–55. DOI: 10.2478/aiht-2020-71-3292.
  • Dehghani, R.; Shayeghi, M.; Esalmi, H.; Moosavi, S. G.; Khah Rabani, D.; Hossein Shahi, D. Detrmination of Organophosphorus Pesticides (Diazinon and Chlorpyrifos) in Water Resources in Barzok, Kashan. Zahedan. J. Res. Med. Sci. 2012, 14, 66–72. https://brieflands.com/articles/zjrms-93196.html.
  • Dahmardeh Behrooz, R.; Esmaili-sari, A.; Urbaniak, M.; Chakraborty, P. Assessing Diazinon Pollution in the Three Major Rivers Flowing into the Caspian Sea (Iran). Water 2021, 13, 335–367. DOI: 10.3390/w13030335.
  • Sobhanardakani, S.; Jamalipour, P. Determination of Some Organochlorine and Organophosphorus Pesticide Residues in Water of Gargar River. J. Env. Sci. Tech. 2017, 19, 224–236. DOI: 10.22034/JEST.2021.8358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.