Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 9
102
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Redox status upon herbicides application in the control of Lolium multiflorum (2n and 4n) as weed

ORCID Icon, , , , , & show all

References

  • Galon, L.; Bragagnolo, L.; Korf, E. P.; Santos, J. B.; dos Barroso, G. M.; Ribeiro, V. H. V. Mobility and Environmental Monitoring of Pesticides in the Atmosphere — A Review. Environ. Sci. Pollut. Res. 2021, 21, 245–249.
  • Finch, S.; Samuel, A.; Lane, G. P. Lockhart and Wiseman’s Crop Husbandry Including Grassland. Elsevier 2014, 25, 154–164.
  • Ramos, A. R.; Zampar, A.; Silva, A. W. L. Dry Matter Productivity and Bromatological Quality of Ryegrass Genotypes Cultivated in Southern Brazil. Arq. Bras. Med. Vet. Zootec. 2021, 73, 247–255. DOI: 10.1590/1678-4162-11885.
  • Pereira, R. C.; Ferreira, M. T. M.; Davide, L. C.; Pasqual, M.; Mittelmann, A.; Techio, V. H. Chromosome Duplication in Lolium multiflorum Lam. Crop Breed. Appl. Biotechnol. 2014, 14, 251–255. DOI: 10.1590/1984-70332014v14n4n39.
  • Pereira, R. C.; de Souza Santos, N.; de Oliveira Bustamante, F.; Mittelmann, A.; Techio, V. H. Stability in Chromosome Number and DNA Content in Synthetic Tetraploids of Lolium multiflorum after Two Generations of Selection. Cienc. Rural 2017, 47, 124–135. DOI: 10.1590/0103-8478cr20150767.
  • Pereira, R. C.; Davide, L. C.; Techio, V. H.; Timbó, A. L. O. Chromosome Doubling of Grasses: An Alternative to Plant Breeding. Cienc. Rural 2012, 42, 1278–1285. DOI: 10.1590/S0103-84782012000700023.
  • Confortin, A. C. C.; Rocha, M. G.; da Machado, J. M.; Roman, J.; Quadros, F. L. F.; de Pötter, L. Different Herbage Masses on Morphogenetic and Structural Traits of Italian Ryegrass. Cienc. Rural 2013, 43, 496–502. DOI: 10.1590/S0103-84782013005000003.
  • Dornelles, RdR.; Comassetto, DdS.; Faleiro, E. A.; Pinto, A. G.; Barreto, M. T.; Rodrigues, C. R.; Del Valle, T. A.; Azevedo, E. d Forage Production, Morphological, and Chemical Composition of Diploid and Tetraploid Cultivars of Italian Ryegrass in Hydromorphic Soils. N. Z. J. Agric. Res. 2022, 65, 365–378. DOI: 10.1080/00288233.2021.1980058.
  • Lee, M. A.; Howard-Andrews, V.; Chester, M. Resistance of Multiple Diploid and Tetraploid Perennial Ryegrass (Lolium perenne L.) Varieties to Three Projected Drought Scenarios for the UK in 2080. Agronomy 2019, 9, 159. DOI: 10.3390/agronomy9030159.
  • Schmitz, M. F.; Cechin, J.; Vargas, A. A. M.; Henckes, J. R.; Vargas, L.; Agostinetto, D.; Rocha, B. H. G.; Bobrowski, V. L. May the Crossing between Diploid and Tetraploid Italian Ryegrass Transfer Glyphosate Resistance to the Next Generation? Bragantia 2020, 79, 154–335. DOI: 10.1590/1678-4499.20190499.
  • Agostinetto, D.; Vargas, L. Weed Resistance to Herbicides in Brazil. Pelotas: UFPel 2014, 1, 398.
  • Agostinetto, D.; Tarouco, C. P.; Langaro, A. C.; Gomes, J.; Vargas, L. Competition between Wheat and Ryegrass under Different Levels of Nitrogen Fertilization. Planta Daninha 2017, 35, 154–180. DOI: 10.1590/s0100-83582017350100050.
  • Galon, L.; Basso, F. J. M.; Chechi, L.; Pilla, T. P.; Santin, C. O.; Bagnara, M. A. M.; Franceschetti, M. B.; Castoldi, C. T.; Perin, G. F.; Forte, C. T. Weed Interference Period and Economic Threshold Level of Ryegrass in Wheat. Bragantia 2019, 78, 409–422. DOI: 10.1590/1678-4499.20180426.
  • Kaspary, T. E.; Lamego, F. P.; Peruzzo, S. T.; Pagliarini, I. B.; Rigon, C. A. G. Pigmentos Fotossintéticos em Azevém Suscetível e Resistente ao Herbicida Glyphosate. Cienc. Rural 2014, 44, 1901–1907. DOI: 10.1590/0103-8478cr20131177.
  • Heap, I. The International Herbicide-Resistant Weed Database. 2020. https://www.weedscience.org/Home.aspx
  • Oliveira, C.; Agostinetto, D.; Vargas, L.; Ávila, L. A.; Tarouco, C. P. Does the Resistance to Glyphosate Herbicide Affect the Competitive Ability of Ryegrass with Soybean? Planta Daninha 2014, 32, 189–196. DOI: 10.1590/S0100-83582014000100021.
  • Schaeffer, A. H.; Silveira, D. C.; Schaeffer, O. A.; Lângaro, N. C.; Vargas, L. Seed Germination Behavior of Glyphosate-Resistant and Susceptible Italian Ryegrass (Lolium multiflorum Lam.). Weed Biol. Manag. 2021, 21, 3–10. DOI: 10.1111/wbm.12218.
  • Fraga, D. S.; Agostinetto, D.; Vargas, L.; Nohatto, M. A.; Thürmer, L.; Holz, M. T. Adaptive Value of Ryegrass Biotypes with Low-Level Resistance and Susceptible to the Herbicide Fluazifop and Competitive Ability with the Wheat Culture. Planta Daninha 2013, 31, 875–885. DOI: 10.1590/S0100-83582013000400014.
  • Mariani, F.; Vargas, L.; Agostinetto, D.; Silva, D. R. O.; Fraga, D. S.; Silva, B. M. Herança da Resistência de Lolium multiflorum ao Iodosulfuron-Methyl Sodium. Planta Daninha 2015, 33, 351–356. DOI: 10.1590/0100-83582015000200021.
  • Ellis, A. T.; Steckel, L. E.; Main, C. L.; De Melo, M. S.; West, D. R.; Mueller, T. C. A Survey for Diclofop-Methyl Resistance in Italian Ryegrass from Tennessee and How to Manage Resistance in Wheat. Weed Technol. 2010, 24, 303–309. DOI: 10.1614/WT-D-09-00035.1.
  • Devine, M. D.; Shimabukuro, R. H. Resistance to Acetyl Coenzyme a Carboxylase Inhibiting Herbicides. In Herbicide Resistance in Plants, Powles, S. B., Ed.; CRC Press: Milton, 2018; pp 141–170.
  • Alarcón-Reverte, R.; García, A.; Urzúa, J.; Fischer, A. J. Resistance to Glyphosate in Junglerice (Echinochloa Colona) from California. Weed Sci. 2013, 61, 48–54. DOI: 10.1614/WS-D-12-00073.1.
  • Kaundun, S. S.; Hutchings, S.-J.; Dale, R. P.; McIndoe, E. Role of a Novel I1781T Mutation and Other Mechanisms in Conferring Resistance to Acetyl-CoA Carboxylase Inhibiting Herbicides in a Black-Grass Population. PLoS One 2013, 8, e69568. DOI: 10.1371/journal.pone.0069568.
  • Brunton, D. J.; Boutsalis, P.; Gill, G.; Preston, C. Resistance to Very-Long-Chain Fatty-Acid (VLCFA)-Inhibiting Herbicides in Multiple Field-Selected Rigid Ryegrass (Lolium rigidum) Populations. Weed Sci. 2019, 67, 267–272. DOI: 10.1017/wsc.2018.93.
  • Dücker, R.; Zöllner, P.; Lümmen, P.; Ries, S.; Collavo, A.; Beffa, R. Glutathione Transferase Plays a Major Role in Flufenacet Resistance of Ryegrass (Lolium Spp.) Field Populations. Pest. Manag. Sci. 2019, 75, 3084–3092. DOI: 10.1002/ps.5425.
  • Liu, M.; Hulting, A. G.; Mallory-Smith, C. A. Characterization of Multiple-Herbicide-Resistant Italian Ryegrass (Lolium perenne Spp. multiflorum). Pest. Manag. Sci. 2014, 70, 1145–1150. DOI: 10.1002/ps.3665.
  • Mahmood, K.; Mathiassen, S. K.; Kristensen, M.; Kudsk, P. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes. Front. Plant Sci. 2016, 7, 1160. DOI: 10.3389/fpls.2016.01160.
  • Tehranchian, P.; Nandula, V. K.; Matzrafi, M.; Jasieniuk, M. Multiple Herbicide Resistance in California Italian Ryegrass (Lolium perenne Ssp. multiflorum): Characterization of ALS-Inhibiting Herbicide Resistance. Weed Sci. 2019, 67, 273–280. DOI: 10.1017/wsc.2019.1.
  • Henckes, J. R.; Cechin, J.; Schmitz, M. F.; Piasecki, C.; Vargas, L.; Agostinetto, D. Fitness Cost and Competitive Ability of Ryegrass Susceptible and with Multiple Resistance to Glyphosate, Iodosulfuron-Methyl, and Pyroxsulam. Planta Daninha 2019, 37, 1–12. DOI: 10.1590/s0100-83582019370100091.
  • Bhattacharjee, S. Sites of Generation and Physicochemical Basis of Formation of Reactive Oxygen Species in Plant Cell. In Reactive Oxygen Species and Antioxidants in Higher Plants, Gupta, S. D., Ed.; CRC Press: Boca Raton, 2010; pp 1–30.
  • Karuppanapandian, T.; Moon, J.-C.; Kim, C.; Manoharan, K.; Kim, W. Reactive Oxygen Species in Plants: Their Generation, Signal Transduction, and Scavenging Mechanisms. Aust. J. Crop Sci. 2011, 5, 709–725.
  • Azevedo Neto, A. D.; de Prisco, J. T.; Enéas-Filho, J.; Rolim Medeiros, J.-V.; Gomes-Filho, E. Hydrogen Peroxide Pre-Treatment Induces Salt-Stress Acclimation in Maize Plants. J. Plant Physiol. 2005, 162, 1114–1122. DOI: 10.1016/j.jplph.2005.01.007.
  • Ahmad, P.; Tripathi, D. K.; Deshmukh, R.; Pratap Singh, V.; Corpas, F. J. Revisiting the Role of ROS and RNS in Plants under Changing Environment. Environ. Exp. Bot. 2019, 161, 1–3. DOI: 10.1016/j.envexpbot.2019.02.017.
  • Kohli, S. K.; Khanna, K.; Bhardwaj, R.; Abd_Allah, E. F.; Ahmad, P.; Corpas, F. J. Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants 2019, 8, 641. DOI: 10.3390/antiox8120641.
  • Mansoor, S.; Ali Wani, O.; Lone, J. K.; Manhas, S.; Kour, N.; Alam, P.; Ahmad, A.; Ahmad, P. Reactive Oxygen Species in Plants: From Source to Sink. Antioxidants 2022, 11, 225. DOI: 10.3390/antiox11020225.
  • Agrofit, A. Sistema de agrotóxicos fitossanitários. Ministério da Agricultura Pecuária e Abastecimento: Brasília, 2012.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Moore, K.; Roberts, L. J. Measurement of Lipid Peroxidation. Free Radic. Res. 1998, 28, 659–671. DOI: 10.3109/10715769809065821.
  • Misra, H. P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. DOI: 10.1016/S0021-9258(19)45228-9.
  • Havir, E. A.; McHale, N. A. Biochemical and Developmental Characterization of Multiple Forms of Catalase in Tobacco Leaves. Plant Physiol. 1987, 84, 450–455. DOI: 10.1104/pp.84.2.450.
  • Anderson, M. D.; Prasad, T. K.; Stewart, C. R. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings. Plant Physiol. 1995, 109, 1247–1257. DOI: 10.1104/pp.109.4.1247.
  • Nakano, Y.; Asada, K. Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880.
  • Zeraik, A. E.; Souza, F. S.; de; Fatibello-Filho, O.; Leite, O. D. Development of a Spot Test for Peroxidase Activity Monitoring during a Purification Procedure. Quím. Nova 2008, 31, 731–734. DOI: 10.1590/S0100-40422008000400003.
  • Habig, W. H.; Pabst, M. J.; Jakoby, W. B. Glutathione S-Transferases the First Enzymatic Step in Mercapturic Acid Formation. J. Biol. Chem. 1974, 249, 7130–7139. DOI: 10.1016/S0021-9258(19)42083-8.
  • Morsch, V. M.; Schetinger, M. R. C.; Martins, A. F.; Rocha, J. B. T. Effects of Cadmium, Lead, Mercury and Zinc on-Aminolevulinic Acid Dehydratase Activity from Radish Leaves. Biologia Plant 2002, 45, 85–89. DOI: 10.1023/A:1015196423320.
  • Sassa, S. Delta-Aminolevulinic Acid Dehydratase Assay. Enzyme 1982, 28, 133–145. DOI: 10.1159/000459097.
  • Castro, B.; Citterico, M.; Kimura, S.; Stevens, D. M.; Wrzaczek, M.; Coaker, G. Stress-Induced Reactive Oxygen Species Compartmentalization, Perception and Signalling. Nat. Plants 2021, 7, 403–410. DOI: 10.1038/s41477-021-00887-0.
  • Saini, P.; Gani, M.; Kaur, J. J.; Godara, L. C.; Singh, C.; Chauhan, S. S.; Francies, R. M.; Bhardwaj, A.; Kumar, N. B.; Ghosh, M. K. Reactive Oxygen Species (ROS): A Way to Stress Survival in Plants. In Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective, Zargar, S. M.; Zargar, M. Y., Eds.; Springer: Singapore, 2018; pp 127–153.
  • Gill, S. S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. DOI: 10.1016/j.plaphy.2010.08.016.
  • Hasanuzzaman, M.; Bhuyan, M. H. M.; Anee, T. I.; Parvin, K.; Nahar, K.; Mahmud, J. A.; Fujita, M. Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants 2019, 8, 384. DOI: 10.3390/antiox8090384.
  • Hasanuzzaman, M.; Bhuyan, M.; Zulfiqar, F.; Raza, A.; Mohsin, S. M.; Mahmud, J. A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. DOI: 10.3390/antiox9080681.
  • Marchi, G.; Marchi, E. C. S.; Guimarães, T. G. Herbicidas: mecanismos de ação e uso. 2008. https://ainfo.cnptia.embrapa.br/digital/bitstream/CPAC-2010/30295/1/doc-227.pdf
  • Gonçalves, E. A.; Menezes, D.; Eduardo, D. V.; Gualberto, R.; Gaion, L. A. Avaliação do controle químico da tiririca (Cyperus rotundus) com diferentes mecanismos de ação. Revista Unimar Ciências. 2021. http://ojs.unimar.br/index.php/ciencias/article/view/1682/946
  • Zhou, Q.; Liu, W.; Zhang, Y.; Liu, K. K. Action Mechanisms of Acetolactate Synthase-Inhibiting Herbicides. Pestic. Biochem. Physiol. 2007, 89, 89–96. DOI: 10.1016/j.pestbp.2007.04.004.
  • Saari, L. L.; Cotterman, J. C.; Thill, D. C. Resistance to Acetolactate Synthase Inhibiting Herbicides. In Herbicide Resistance in Plants, Powles, S. B., Ed.; CRC Press: Milton, 2018; pp 83–140.
  • Khaledi, R.; Fayaz, F.; Kahrizi, D.; Talebi, R. PCR-Based Identification of Point Mutation Mediating Acetolactate Synthase-Inhibiting Herbicide Resistance in Weed Wild Mustard (Sinapis arvensis). Mol. Biol. Rep. 2019, 46, 5113–5121. DOI: 10.1007/s11033-019-04967-5.
  • Jung, H.; Lee, B.-R.; Chae, M.-J.; Lee, E.-J.; Lee, T.-G.; Jung, G.-B.; Kim, M.-S.; Lee, J. Ascorbate-Mediated Modulation of Cadmium Stress Responses: Reactive Oxygen Species and Redox Status in Brassica napus. Front. Plant Sci. 2020, 11, 586547. DOI: 10.3389/fpls.2020.586547.
  • Alves, C.; Costa, E.; Sofiatti, J. R.; Forte, C. T.; Winter, F. L.; Holz, C. M.; Kaizer, R. R.; Galon, L. Effect of Herbicides in the Oxidative Stress in Crop Winter Species. An. Acad. Bras. Cienc. 2018, 90, 1533–1542.
  • Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant Enzymes Regulation in Plants in Reference to Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS). Plant Gene 2019, 19, 100182. DOI: 10.1016/j.plgene.2019.100182.
  • Sharma, M.; Gupta, S.; Deeba, F.; Pandey, V. Effects of Reactive Oxygen Species on Crop Productivity: An Overview. Wiley Online Library: New York, 2017.
  • Darbyshire, S. J.; Francis, A.; Mulligan, G. A.; Graham, G. L. The Biology of Canadian Weeds. 153. Stachys Palustris L. Can. J. Plant Sci. 2014, 94, 709–722. DOI: 10.4141/cjps2013-300.
  • Wang, J.; Cheung, M.; Rasooli, L.; Amirsadeghi, S.; Vanlerberghe, G. C. Plant Respiration in a High CO2 World: How Will Alternative Oxidase Respond to Future Atmospheric and Climatic Conditions? Can. J. Plant Sci. 2014, 94, 1091–1101. DOI: 10.4141/cjps2013-176.
  • Silva, F. B.; Costa, A. C.; Müller, C.; Nascimento, K. T.; Batista, P. F.; Vital, R. G.; Megguer, C. A.; Jakelaitis, A.; Domingos, M. Dipteryx Alata, a Tree Native to the Brazilian Cerrado, Is Sensitive to the Herbicide Nicosulfuron. Ecotoxicology 2020, 29, 217–225. DOI: 10.1007/s10646-019-02154-7.
  • Sharma, P.; Jha, A. B.; Dubey, R. S.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 1–26. 2012. DOI: 10.1155/2012/217037.
  • Liang, W.; Ma, X.; Wan, P.; Liu, L. Plant Salt-Tolerance Mechanism: A Review. Biochem. Biophys. Res. Commun. 2018, 495, 286–291. DOI: 10.1016/j.bbrc.2017.11.043.
  • Galvez-Valdivieso, G.; Mullineaux, P. M. The Role of Reactive Oxygen Species in Signalling from Chloroplasts to the Nucleus. Physiol. Plant 2010, 138, 430–439. DOI: 10.1111/j.1399-3054.2009.01331.x.
  • Berwal, M.; Ram, C. Superoxide Dismutase: A Stable Biochemical Marker for Abiotic Stress Tolerance in Higher Plants. In Abiotic and Biotic Stress in Plants, Shanker, A. K.; Shanker, C., Eds.; IntechOpen: Rijeka, 2018; pp 1–10.
  • Bowler, C.; Van Camp, W.; Van Montagu, M.; Inzé, D.; Asada, K. Superoxide Dismutase in Plants. Crit. Rev. Plant Sci. 1994, 13, 199–218. DOI: 10.1080/07352689409701914.
  • Wang, M.; Zhao, X.; Xiao, Z.; Yin, X.; Xing, T.; Xia, G. A Wheat Superoxide Dismutase Gene TaSOD2 Enhances Salt Resistance through Modulating Redox Homeostasis by Promoting NADPH Oxidase Activity. Plant. Mol. Biol. 2016, 91, 115–130. DOI: 10.1007/s11103-016-0446-y.
  • Defarge, N.; De Vendômois, J. S.; Séralini, G. E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. DOI: 10.1016/j.toxrep.2017.12.025.
  • Gomes, M. P.; Le Manac'h, S. G.; Hénault-Ethier, L.; Labrecque, M.; Lucotte, M.; Juneau, P. Glyphosate-Dependent Inhibition of Photosynthesis in Willow. Front. Plant Sci. 2017, 8, 207. DOI: 10.3389/fpls.2017.00207.
  • Arisi, A.-C. M.; Cornic, G.; Jouanin, L.; Foyer, C. H. Overexpression of Iron Superoxide Dismutase in Transformed Poplar Modifies the Regulation of Photosynthesis at Low CO2 Partial Pressures or following Exposure to the Prooxidant Herbicide Methyl Viologen. Plant Physiol. 1998, 117, 565–574. DOI: 10.1104/pp.117.2.565.
  • Wang, H.; Xu, D.; Zhu, X.; Wang, M.; Xia, Z. The Maize SUMO Conjugating Enzyme ZmSCE1b Protects Plants from Paraquat Toxicity. Ecotoxicol. Environ. Saf. 2021, 211, 111909. DOI: 10.1016/j.ecoenv.2021.111909.
  • Tan, J.; Zhao, H.; Hong, J.; Han, Y.; Li, H.; Zhao, W. Effects of Exogenous Nitric Oxide on Photosynthesis, Antioxidant Capacity and Proline Accumulation in Wheat Seedlings Subjected to Osmotic Stress. World J. Agric. Sci. 2008, 4, 307–313.
  • Shigeoka, S.; Ishikawa, T.; Tamoi, M.; Miyagawa, Y.; Takeda, T.; Yabuta, Y.; Yoshimura, K. Regulation and Function of Ascorbate Peroxidase Isoenzymes. J. Exp. Bot. 2002, 53, 1305–1319. DOI: 10.1093/jexbot/53.372.1305.
  • Ghamsari, L.; Keyhani, E.; GOLKHOU, S. Kinetics properties of guaiacol peroxidase activity in Crocus sativus L. corm during rooting. Iran. Biomed. J. 2007, 11, 137–146.
  • Khoshbakht, D.; Asghari, M. R.; Haghighi, M. Effects of Foliar Applications of Nitric Oxide and Spermidine on Chlorophyll Fluorescence, Photosynthesis and Antioxidant Enzyme Activities of Citrus Seedlings under Salinity Stress. Photosynt 2018, 56, 1313–1325. DOI: 10.1007/s11099-018-0839-z.
  • Tanaka, R.; Tanaka, A. Tetrapyrrole Biosynthesis in Higher Plants. Annu. Rev. Plant Biol. 2007, 58, 321–346.
  • Sun, Y. P.; Liu, J.; Cao, R. X.; Huang, Y. J.; Hall, A. M.; Guo, C. B.; Wang, L. J. Effects of 5-Aminolevulinic Acid Treatment on Photosynthesis of Strawberry. Photosynt 2017, 55, 276–284. DOI: 10.1007/s11099-016-0667-y.
  • Marchezan, M. G.; Avila, L. A.; Agostinetto, D.; Schaedler, C. E.; Langaro, A. C.; Oliveira, C.; Zimmer, M.; Schreiber, F.; Marchezan, M. G.; Avila, L. A.; et al. Morphological and Biochemical Alterations of Paddy Rice in Response to Stress Caused by Herbicides and Total Plant Submersion. Planta Daninha 2017, 35, 35. DOI: 10.1590/s0100-83582017350100010.
  • Langaro, A. C.; Agostinetto, D.; Ruchel, Q.; Garcia, J. R.; Perboni, L. T.; Langaro, A. C.; Agostinetto, D.; Ruchel, Q.; Garcia, J. R.; Perboni, L. T. Oxidative Stress Caused by the Use of Preemergent Herbicides in Rice Crops. Revista Ciência Agronômica 2017, 48, 358–364. DOI: 10.5935/1806-6690.20170041.
  • Killiny, N.; Hijaz, F.; Nehela, Y.; Hajeri, S.; Gowda, S. Effects of δ-Aminolevulinic Acid Dehydratase Silencing on the Primary and Secondary Metabolisms of Citrus. Plant Direct 2018, 2, e00072. DOI: 10.1002/pld3.72.
  • Wang, Y.; Li, J.; Gu, W.; Zhang, Q.; Tian, L.; Guo, S.; Wei, S. Exogenous Application of 5-Aminolevulinic Acid Improves Low-Temperature Stress Tolerance of Maize Seedlings. Crop Pasture Sci. 2018, 69, 587–593. DOI: 10.1071/CP17401.
  • Gill, R. A.; Ali, B.; Islam, F.; Farooq, M. A.; Gill, M. B.; Mwamba, T. M.; Zhou, W. Physiological and Molecular Analyses of Black and Yellow Seeded Brassica napus Regulated by 5-Aminolivulinic Acid under Chromium Stress. Plant Physiol. Biochem. 2015, 94, 130–143. DOI: 10.1016/j.plaphy.2015.06.001.
  • Zhang, W. F.; Zhang, F.; Raziuddin, R.; Gong, H. J.; Yang, Z. M.; Lu, L.; Ye, Q. F.; Zhou, W. J. Effects of 5-Aminolevulinic Acid on Oilseed Rape Seedling Growth under Herbicide Toxicity Stress. J. Plant Growth Regul. 2008, 27, 159–169. DOI: 10.1007/s00344-008-9042-y.
  • Alves, C.; Galon, L.; Kaizer, R. R.; Winter, F. L.; Holz, C. M.; Nonemacher, F.; Santin, C. O. Tolerance of Annual Winter Species to Protoporfirinogen Oxidase Inhibiting Herbicides (Protox). Sbcpd 2018, 36, 156–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.