Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 9
176
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Development of a low-cost inoculum to improve composting of cattle slaughterhouse by-products

, , , ORCID Icon, , , , , & ORCID Icon show all

References

  • ABRA. I Diagnóstico da indústria brasileira de reciclagem animal. Associação Brasileira de Reciclagem Animal. Centro de Estudos e Pesquisas Políticas, Históricas e das Organizações. Gestão 2011/2013; ABRA: Brasília, Brazil, 2011; p 84.
  • Alao, B. O.; Falowo, A. B.; Chulayo, A.; Muchenje, V. The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. Sustainability. 2017, 9, 1089–10101. DOI: 10.3390/su9071089.
  • Kannadhasan, M. S.; Lawrence, C.; Ramesh-Saravana-Kumar, V. Study on Disposal of Broiler Slaughter Waste Implying Eco-Friendly Waste Management. Int. J. Sci. Environ. Technol. 2017, 6, 1918–1924.
  • Franke-Whittle, I.; Insam, H. Treatment Alternatives of Slaughterhouse Wastes, and Their Effect on the Inactivation of Different Pathogens: A Review. Crit. Rev. Microbiol. 2013, 39, 139–151. DOI: 10.3109/1040841X.2012.694410.
  • Bandaw, T.; Herago, T. Review on Abattoir Waste Management. Glob. Vet. 2017, 19, 517–524. DOI: 10.5829/idosi.gv.2017.517.524.
  • Maniadakis, K.; Lasaridi, K.; Manios, Y.; Kyriacou, M.; Manios, T. Integrated Waste Management Through Producers and Consumers Education: Composting of Vegetable Crop Residues for Reuse in Cultivation. J. Environ. Sci. Health B. 2004, 39, 169–183. DOI: 10.1081/pfc-120027447.
  • Ratnawati, R.; Trihadiningrum, Y.; Juliastuti, S. R. Composting of Rumen Content Waste Using Anaerobic-Anoxic-Oxic (A2/O) System. J. Solid Waste Technol. Mngmnt. 2016, 42, 98–106. DOI: 10.5276/JSWTM.2016.98.
  • Haug, R. T. The Practical Handbook of Compost Engineering, 1st ed.; Lewis Publishers: Boca Raton, 1993.
  • Adani, F.; Genevini, P. L.; Tambone, F. A New Index of Organic Matter Stability. Compost. Sci. Util. 1995, 3, 25–37. DOI: 10.1080/1065657X.1995.10701779.
  • Aguilar, F. J.; González, P. Agricultural Use of Compost from Municipal Solid Waste – Effects on Soil Physical Properties. J. Solid Waste Technol. Manag. 2002, 28, 200–212.
  • Pazini, R. C.; Cavichioli, F. A.; Grossi, S. F. Destination of Dead Carcasses: Compostage. Braz. J. Develop. 2019, 5, 4493–4502.
  • Kiehl, E. J. Manual de compostagem: maturação e qualidade do composto, 1st ed.; Ceres: Piracicaba, Brazil, 1998.
  • FAO. Farmer’s Compost Handbook. Experiences in Latin America. In Food and Agriculture Organization of the United Nations. Regional Office for Latin America and the Caribbean, Santiago; Román, P.; Pantoja, M.M.A., Eds., 2015. ISBN 978-92-5-107844-0.
  • Hao, X.; Chang, C.; Larney, F. J. Carbon, Nitrogen Balances and Greenhouse Gas Emission During Cattle Feedlot Manure Composting. J. Environ. Qual. 2004, 33, 37–44. DOI: 10.2134/jeq2004.3700.
  • Chiu, S. L. H.; Lo, I. M. C. Reviewing the Anaerobic Digestion and Co-Digestion Process of Food Waste from the Perspectives on Biogas Production Performance and Environmental Impacts. Environ. Sci. Pollut. Res. Int. 2016, 23, 24435–24450. DOI: 10.1007/s11356-016-7159-2.
  • Ware, A.; Power, N. Biogas from Cattle Slaughterhouse Waste: Energy Recovery Towards an Energy Self-Sufficient Industry in Ireland. Renew. Energ. 2016, 97, 541–549. DOI: 10.1016/j.renene.2016.05.068.
  • Farhad, W.; Cheema, M. A.; Hammad, H. M.; Saleem, M. F.; Fahad, S.; Abbas, F.; Khosa, I.; Bakhat, H. F. Influence of Composted Poultry Manure and Irrigation Regimes on Some Morpho-Physiology Parameters of Maize Under Semiarid Environments. Environ. Sci. Pollut. Res. Int. 2018, 25, 19918–19931. DOI: 10.1007/s11356-018-2125-9.
  • Aydn, G. A.; Kocasoy, G. Investigation of Appropriate Initial Composition And Aeration Method for Co‐Composting of Yard Waste and Market Wastes. J. Environ. Sci. Health B. 2003, 38, 221–231. DOI: 10.1081/PFC-120018451.
  • Lim, L. Y.; Bong, C. P. C.; Chua, L. S.; Lee, C. T. Physicochemical Profile of Microbial-Assisted Composting on Empty Fruit Bunches of Oil Palm Trees. Environ. Sci. Pollut. Res. Int. 2015, 22, 19814–19822. DOI: 10.1007/s11356-015-5156-5.
  • Lu, W.-J.; Wang, H.-T.; Nie, Y.-F.; Wang, Z.-C.; Huang, D.-Y.; Qiu, X.-Y.; Chen, J.-C. Effect of Inoculating Flower Stalks and Vegetable Waste with Ligno-cellulolytic Microorganisms on the Composting Process. J. Environ. Sci. Health B. 2004, 39, 871–887. DOI: 10.1081/LESB-200030896.
  • Inácio, C. T.; Miller, P. R. M. Compostagem: Ciência e prática aplicadas a gestão de resíduos; Embrapa Solos: Rio de Janeiro, Brazil, 2009.
  • Zhang, W.; Lau, A. K.; Wen, Z. S. Preventive Control of Odor Emissions Through Manipulation of Operational Parameters during the Active Phase of Composting. J. Environ. Sci. Health B. 2009, 44, 496–505. DOI: 10.1080/03601230902935451.
  • Insam, H.; Bertoldi, M. Microbiology of the Composting Process. Compost Science and Technology, Waste Management Series; Elsevier Science, Amsterdam., 2007; pp 25–48.
  • Sánchez, Ó. S.; Ospina, D. A.; Montoya, S. Compost Supplementation with Nutrients and Microorganisms in Composting Process. Waste Manag. 2017, 69, 136–153. DOI: 10.1016/j.wasman.2017.08.012.
  • Liu, J.; Xu, X.-H.; Li, H.-T.; Xu, Y. Effect of Microbiological Inocula on Chemical and Physical Properties and Microbial Community of Cow Manure Compost. Biomass Bioenergy. 2011, 35, 3433–3439. DOI: 10.1016/j.biombioe.2011.03.042.
  • Smet, E.; Langenhove, H. V. Abatement of Volatile Organic Sulfur Compounds in Odorous Emissions from the Bio-Industry. Biodegradation. 1998, 9, 273–284. DOI: 10.1023/A:1008281609966.
  • Batista-Barwinski, M. J. Arcabouço jurídico e tecnologia Para compostagem de resíduo de abatedouro. Master Dissertation, UFSC, Florianópolis, SC, Brasil, 2015. 146. p, Programa de Pós-Graduação em Agroecossistemas
  • Rotolo, L.; Gai, F.; Peiretti, P. G.; Ortoffi, M.; Zoccarato, I.; Gasco, L. Live Yeast (Saccharomyces cerevisiae Var. boulardii) Supplementation in Fattening Rabbit Diet: Effect on Productive Performance and Meat Quality. Livest. Sci. 2014, 162, 178–184. DOI: 10.1016/j.livsci.2014.01.022.
  • Cray, J. A.; Houghton, J. D. R.; Cooke, L. R.; Hallsworth, J. E. A Simple Inhibition Coefficient for Quantifying Potency of Biocontrol Agents against Plant-Pathogenic Fungi. BioControl. 2015, 81, 93–100. DOI: 10.1016/j.biocontrol.2014.11.006.
  • Kantha, T.; Chaiyasut, C.; Kantachote, D.; Sukrong, S.; Muangprom, A. Synergistic Growth of Lactic Acid Bacteria and Photosynthetic Bacteria for Possible Use as a Bio-Fertilizer. Afr. J. Microbiol. Res. 2012, 6, 504–511. DOI: 10.5897/AJMR11.669.
  • APHA. Compendium of Methods for the Microbiological Examination of Foods (CMMEF), 4th ed.; American Public Health Association: Washington, 2001.
  • IAL. Normas analíticas do Instituto Adolfo Lutz: Métodos químicos e físicos Para análises de alimentos, vol 1, 4th ed.; Instituto Adolfo Lutz: Brasília, Brazil, 2005.
  • Schnürer, J.; Rosswall, T. Fluorescein Diacetate Hydrolysis as a Measure of Total Microbial Activity in Soil and Litter. Appl. Environ. Microbiol. 1982, 43, 1256–1261. DOI: 10.1128/aem.43.6.1256-1261.1982.
  • Ayres, M.; Ayres Jr, M.; Ayres, D. L.; Santos, A. A. S.; BioEstat, 30. Aplicações estatísticas nas áreas das ciências biológicas e médicas; Sociedade Civil Mamirauá – CNPq: Belém, Brazil, 2003.
  • Hellmann, B.; Zelles, L.; Palojarvi, A.; Bai, Q. Emission of Climate-Relevant Trace Gases and Succession of Microbial Communities during Open-Windrow Composting. Appl. Environ. Microbiol. 1997, 63, 1011–1018.
  • Dalpian, J. J.; Marquardt, L.; Machado, Ê. L. Treatment and Disposal of Cellulosic and Greasy Wastes from Industry of Flesh Products in The Valley of the Rio Pardo (RS) – Brazil. In Global Symposium on Recyclin, Waste Treatment and Clean Technology, REWAS04, Madrid; INASMET TMS 2, 2004; pp 1811–1817.
  • Nakasaki, K.; Nagasaki, K.; Ariga, O. Degradation of Fats during Thermophilic Composting of Organic Waste. Waste Manag. Res. 2004, 22, 276–282. DOI: 10.1177/0734242X04045430.
  • Zeng, G.; Yu, Z.; Chen, Y.; Zhang, J.; Li, H.; Yu, M.; Zhao, M. Response of Compost Maturity and Microbial Community Composition to Pentachlorophenol (PCP)- Contaminated Soil during Composting. Bioresour. Technol. 2011, 102, 5905–5911. DOI: 10.1016/j.biortech.2011.02.088.
  • Błońska, E.; Lasota, J.; Gruba, P. Enzymatic Activity and Stabilization of Organic Matter in Soil with Different Detritus Inputs. J. Soil Sci. Plant Nutr. 2017, 63, 242–247. DOI: 10.1080/00380768.2017.1326281.
  • Mondini, C.; Fornasier, F.; Sinicco, T. Enzymatic Activity as a Parameter for the Characterization of the Composting Process. Soil Biol. Biochem. 2004, 36, 1587–1594. DOI: 10.1016/j.soilbio.2004.07.008.
  • Insam, H.; Riddech, N.; Klammer, S. Microbiology of Composting; Springer: Berlin, Heidelberg, 2002.
  • Schnitzer, M. Organic Matter Characterization. In Methods of Soil Analysis: Chemical and Microbiological Properties, 2nd ed.; Page, A. L., Miller, R. H., Keeney, D. R., Eds. American Society of Agronomy/SSSA: Madison, 1982; pp 58l–594.
  • Kiehl, E. J. Fertilizantes Orgânicos; Ceres: São Paulo, Brazil, 1985.
  • Wardle, D. A.; Parkinson, D. Interactions between Microclimatic Variables and the Soil Microbial Biomass. Biol. Fertil. Soils. 1990, 9, 273–280. DOI: 10.1007/BF00336239.
  • Pereira, J. Q.; Lopes, F. C.; Petry, M. V.; Medina, L. F. C.; Brandelli, A. Isolation of Three Novel Antarctic Psychrotolerant Feather-Degrading Bacteria and Partial Purification of Keratinolytic Enzyme from Lysobacter sp. A03. Int. Biodeter. Biodegradation. 2014, 88, 1–7. DOI: 10.1016/j.ibiod.2013.11.012.
  • Henderson, C. M.; Block, D. E. Examining the Role of Membrane Lipid Composition in Determining the Ethanol Tolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 2966–2972. DOI: 10.1128/AEM.04151-13.
  • Haselroth, K. J.; Wilke, P.; Dalla-Costa, I. M.; Rotta, V. M. L.; Rosado, A. F.; Hermes, E. Effectiveness of Aeromonas hydrophila for the Removal of Oil and Grease from Cattle Slaughterhouse Effluent. J. Clean. Prod. 2021, 287, 125533. DOI: 10.1016/j.jclepro.2020.125533.
  • Knoblach, B.; Rachubinski, R. A. Transport and Retention Mechanisms Govern Lipid Droplet Inheritance in Saccharomyces cerevisiae. Traffic. 2015, 16, 298–309. DOI: 10.1111/tra.12247.
  • Qiu, Z.; Tan, H.; Zhou, S.; Cao, L. Surface Display of a Bifunctional Glutathione Synthetase on Saccharomyces cerevisiae for Converting Chicken Feather Hydrolysate into Glutathione. Mol. Biotechnol. 2014, 56, 726–730. DOI: 10.1007/s12033-014-9750-4.
  • Sánchez-Monedero, M. A.; Cegarra, J.; García, D.; Roig, A. Chemical and Structural Evolution of Humic Acids during Organic Waste Composting. Biodegradation. 2002, 13, 361–371. DOI: 10.1023/A:1022888231982..
  • Ryckeboer, J.; Mergaert, J.; Coosemans, J.; Deprins, K.; Swings, J. Microbiological Aspects of Biowaste during Composting in a Monitored Compost Bin. J. Appl. Microbiol. 2003, 94, 127–137. DOI: 10.1046/j.1365-2672.2003.01800.x.
  • Tiquia, S. M.; Wan, J. H. C.; Tam, N. F. Y. Microbial Population Dynamics and Enzyme Activities during Composting. Compost Sci. Util. 2002, 10, 150–161. DOI: 10.1080/1065657X.2002.10702075.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.