Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 10
282
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Ecotoxicological effects of conventional herbicides and a natural herbicide on freshwater fish (Danio rerio)

, , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Crist, E.; Mora, C.; Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 2017, 356, 260–264. DOI: 10.1126/science.aal2011.
  • Grau, H.R.; Gasparri, N.I.; Aide, T.M. Balancing food production and nature conservation in the neotropical dry forests of northern Argentina. Glob. Chang. Biol. 2008, 14, 985–997. DOI: 10.1111/j.1365-2486.2008.01554.x.
  • Fernandes, C.L.F.; Volcão, L.M.; Ramires, P.F.; De Moura, R.R.; Júnior, F.M.R.D.S. Distribution of pesticides in agricultural and urban soils of Brazil: a critical review. Environ. Sci. Process Impacts 2020, 22, 256–270. DOI: 10.1039/C9EM00433E.
  • Abessa, D.; Famá, A.; Buruaem, L. The systematic dismantling of Brazilian environmental laws risks losses on all fronts. Nat. Ecol. Evol. 2019, 3, 510–511. DOI: 10.1038/s41559-019-0855-9.
  • Thomaz, S.M.; Barbosa, L.G.; Souza Duarte, M.C.; Panosso, R. Opinion: The Future of nature conservation in Brazil. Inland Waters 2020, 10, 295–303. DOI: 10.1080/20442041.2020.1750255.
  • Carson, R. Silent Spring. Houghton Mifflin Company: Boston, USA, 1962.
  • Jokanović, M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: a review. Toxicology 2018, 410, 125–131. DOI: 10.1016/j.tox.2018.09.009.
  • Finkler, M.G.; Battisti, I.D.E.; Anastácio, Z. Exposição de Crianças a Agrotóxicos: uma Revisão Integrativa. Rev. INFAD Psicol. 2019, 1, 147–156. DOI: 10.17060/ijodaep.2019.n2.v1.1683.
  • Belchior, D.C.; Saraiva, A.S.; López, A.M.C.; Scheidt, G.N. Impactos de Agrotóxicos Sobre o Meio Ambiente e a Saúde. Cad. Ciência Tecnol. 2017, 34, 135–151. http://seer.sct.embrapa.br/index.php/cct/article/view/26296/13929.
  • Belchior, D.C.V. Impactos de Agrotóxicos Sobre o Meio Ambiente e a Saúde Humana. In Programa Educativo e Social JC na Escola: Ciência Alimentando o Brasil; Magnoni Júnior, L., Stevens, D., Purini, S.R.M., Magnoni, M.G.M., Vale, J.M.F., Branco Júnior, G.A., Adorno Filho, E.F., Silva, W.T.L., Figueiredo, W.S., Eds.; Centro Paula Souza: São Paulo, 2018; 1–701. https://www.agbbauru.org.br/publicacoes/Alimentando2ed/pdf/Alimentando2ed-Completo.pdf.
  • Rubira, R.J.G.; Constantino, C.J.L.; Otero, J.C.; Sanchez‐Cortes, S. Abiotic degradation of s‐triazine pesticides analyzed by surface‐enhanced Raman scattering. J. Raman Spectrosc. 2020, 51, 264–273. DOI: 10.1002/jrs.5776.
  • Lupi, L.; Bedmar, F.; Puricelli, M.; Marino, D.; Aparicio, V.C.; Wunderlin, D.; Miglioranza, K.S.B. Glyphosate runoff and its occurrence in rainwater and subsurface soil in the nearby area of agricultural fields in Argentina. Chemosphere 2019, 225, 906–914. DOI: 10.1016/j.chemosphere.2019.03.090.
  • Brovini, E.M.; Cardoso, S.J.; Quadra, G.R.; Vilas-Boas, J.A.; Paranaíba, J.R.; Oliveira Pereira, R.; Mendonça, R.F. Glyphosate concentrations in global freshwaters: are aquatic organisms at risk? Environ. Sci. Pollut. Res. Int. 2021, 28, 60635–60648. DOI: 10.1007/s11356-021-14609-8.
  • Rohr, J.R.; McCoy, K.A. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ. Health Perspect. 2010, 118, 20–32. DOI: 10.1289/ehp.0901164.
  • Wirbisky, S.E.; Freeman, J.L. Atrazine exposure elicits copy number alterations in the zebrafish genome. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2017, 194, 1–8. DOI: 10.1016/j.cbpc.2017.01.003.
  • Cerdeira, A.L.; Gazziero, D.L.; Duke, S.O.; Matallo, M.B. Agricultural impacts of glyphosate-resistant soybean cultivation in South America. J. Agric. Food. Chem. 2011, 59, 5799–5807. DOI: 10.1021/jf102652y.
  • Daam, M.A.; Rico, A. Freshwater shrimps as sensitive test species for the risk assessment of pesticides in the tropics. Environ. Sci. Pollut. Res. Int. 2018, 25, 13235–13243. DOI: 10.1007/s11356-016-7451-1.
  • Jayasumana, C.; Gunatilake, S.; Senanayake, P. Glyphosate, hard water and nephrotoxic metals: are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int. J. Environ. Res. Public Health 2014, 11, 2125–2147. DOI: 10.3390/ijerph110202125.
  • Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 3–15. DOI: 10.1186/s12302-016-0070-0.
  • Singh, S.; Kumar, V.; Datta, S.; Wani, A.B.; Dhanjal, D.S.; Romero, R.; Singh, J. Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ. Chem. Lett. 2020, 18, 663–702. DOI: 10.1007/s10311-020-00969-z.
  • Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A.B.; Singh, N.; Singh, J. Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 2018, 16, 211–237. DOI: 10.1007/s10311-017-0665-8.
  • Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Assessment of allelopathic compounds to develop new natural herbicides: a review. AJ 2021, 52, 21–40. DOI: 10.26651/allelo.j/2021-52-1-1305.
  • Mentz, L.A.; Petrovick, P.R. Farmacognosia: da Planta ao Medicamento; Editora da UFSC: Florianópolis, 2003.
  • Hierro, J.L.; Callaway, R.M. The ecological importance of allelopathy. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 25–45. DOI: 10.1146/annurev-ecolsys-051120-030619.
  • Xie, Y.; Tian, L.; Han, X.; Yang, Y. Research advances in allelopathy of volatile organic compounds (VOCs) of plants. Horticulturae 2021, 7, 278. DOI: 10.3390/horticulturae7090278.
  • Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural products as sources of herbicides: current status and future trends. Weed Res. 2000, 40, 99–111. DOI: 10.1046/j.1365-3180.2000.00161.x.
  • Araniti, F.; Mancuso, R.; Lupini, A.; Sunseri, F.; Abenavoli, M.R.; Gabriele, B. Benzofuran‐2‐acetic esters as a new class of natural‐like herbicides. Pest Manag. Sci. 2020, 76, 395–404. DOI: 10.1002/ps.5528.
  • Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. DOI: 10.1111/j.1469-185X.2007.00030.x.
  • Zhang, Q.; Cheng, J.; Xin, Q. Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 2015, 24, 707–719. DOI: 10.1007/s10646-015-1417-9.
  • Canedo, A.; Jesus, L.W.O.; Bailão, E.F.L.C.; Rocha, T.L. Micronucleus test and nuclear abnormality assay in zebrafish (Danio rerio): past, present, and future trends. Environ. Pollut. 2021, 290, 118019. DOI: 10.1016/j.envpol.2021.118019.
  • Schmid, W. The micronucleus test. Mutat. Res. Sect. Environ. Mutagen 1975, 31, 9–15.
  • Thomé, R.G.; Silva, P.M.; Santos, H.B. Avaliação de Genotoxidade da Água de um Rio Urbano Utilizando Estudo de Células Sanguíneas de Danio rerio. Conexão Ci 2016, 11, 9–16. DOI: 10.24862/cco.v11i2.415.
  • Ramsdorf, W.A.; Vicari, T.; Almeida, M.I.; Artoni, R.F.; Cestari, M.M. Handling of Astyanax sp. for biomonitoring in Cangüiri farm within a fountainhead (Iraí River Environment Preservation Area) through the use of genetic biomarkers. Environ. Monit. Assess. 2012, 184, 5841–5849. DOI: 10.1007/s10661-012-2752-4.
  • Carrasco, K.R.; Tilbury, K.L.; Myers, M.S. Assessment of the Piscine Micronucleus Test as an in situ biological indicator of chemical contaminant effects. Can. J. Fish. Aquat. Sci. 1990, 47, 2123–2136. DOI: 10.1139/f90-237.
  • Legendre, P.; Legendre, L. Numerical Ecology; Elsevier Science: Amsterdam, 1998.
  • Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x.
  • Anderson, M.J. Distance–based tests for homogeneity of multivariate dispersions. Biometrics 2006, 62, 245–253. DOI: 10.1111/j.1541-0420.2005.00440.x.
  • R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, 2018.
  • Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015, 67, 1–48. DOI: 10.18637/jss.v067.i01.
  • Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package. R Package, Version 2, 2016; 3–4. Available at: http://cran.r-project.org/web/packages/vegan.
  • Kembel, S. An introduction to the picante package, 2010. Available at: picante.r-forge.r-project.org/picante-intro.pdf.
  • Simpson, G.L. Permute: functions for generating restricted permutations of data. R Package 0.9-4, 2018 (accessed Apr 2022).
  • Athira, N.; Jaya, D.S. The use of fish biomarkers for assessing textile effluent contamination of aquatic ecosystems: a review. Nat. Environ. Pollut. Technol. 2018, 17, 25–34.
  • Botelho, R.G.; Monteiro, S.H.; Christofoletti, C.A.; Moura-Andrade, G.C.R.; Tornisielo, V.L. Environmentally relevant concentrations of atrazine and ametrine induce micronuclei formation and nuclear abnormalities in erythrocytes of fish. Arch. Environ. Contam. Toxicol. 2015, 69, 577–585. DOI: 10.1007/s00244-015-0171-6.
  • Bonifacio, A.F.; Zambrano, M.J.; Hued, A.C. Integrated ecotoxicological assessment of the complex interactions between chlorpyrifos and glyphosate on a non-target species Cnesterodon decemmaculatus (Jenyns, 1842). Chemosphere 2020, 261, 127782. DOI: 10.1016/j.chemosphere.2020.127782.
  • Albuquerque, F.P.; Oliveira, J.L.; Moschini-Carlos, V.; Fraceto, L.F. An overview of the potential impacts of atrazine in aquatic environments: perspectives for tailored solutions based on nanotechnology. Sci. Total Environ. 2020, 700, 134868. DOI: 10.1016/j.scitotenv.2019.134868.
  • Gonçalves, M.W.; De Campos, C.B.M.; Batista, V.G.; Da Cruz, A.D.; De Marco Junior, P.; Bastos, R.P.; Silva, D.D.M. Genotoxic and mutagenic effects of atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872 (Anura: Hylidae) developmental larval stages. Chemosphere 2017, 182, 730–737. DOI: 10.1016/j.chemosphere.2017.05.078.
  • Delcorso, M.C.; De Paiva, P.P.; Grigoleto, M.R.P.; Queiroz, S.C.; Collares-Buzato, C.B.; Arana, S. Effects of sublethal and realistic concentrations of the commercial herbicide atrazine in Pacu (Piaractus mesopotamicus): long-term exposure and recovery assays. Vet. World 2020, 13, 147–159. DOI: 10.14202/vetworld.2020.147-159.
  • de Oliveira, J.S.P.; Vieira, L.G.; Carvalho, W.F.; de Souza, M.B.; de Lima Rodrigues, A.S.; Simões, K.; de Melo De Silva, D.; Dos Santos Mendonça, J.; Hirano, L.Q.L.; Santos, A.L.Q.; Malafaia, G. Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Sci. Total Environ. 2020, 737, 140304. DOI: 10.1016/j.scitotenv.2020.140304.
  • Nwani, C.D.; Nagpure, N.S.; Kumar, R.; Kushwaha, B.; Kumar, P.; Lakra, W.S. Induction of micronuclei and nuclear lesions in Channa punctatus following exposure to carbosulfan, glyphosate and atrazine. Drug Chem. Toxicol. 2014, 37, 370–377. DOI: 10.3109/01480545.2013.866138.
  • Çavas, T.; Konen, S. Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 2007, 22, 263–268. DOI: 10.1093/mutage/gem012.
  • Al-Samarai, G.; Mahdi, W.; Al-Hilali, B. Reducing environmental pollution by chemical herbicides using natural plant derivatives – allelopathy effect. Ann. Agric. Environ. Med. 2018, 25, 449–452. DOI: 10.26444/aaem/90888.
  • Shoeiba Tasneem, R.Y. Biochemical alterations in total proteins and related enzymes in tissues of Cyprinus carpio (L.) during sublethal exposure to Karanjin Based Biopesticide Derisom. Indian J. Exp. Biol. 2021, 59, 125–131.
  • Kamaraj, C.; Deepak, P.; Balasubramani, G.; Karthi, S.; Arul, D.; Aiswarya, D.; Amutha, V.; Vimalkumar, E.; Mathivanan, D.; Suseem, S.R.; et al. Target and non-target toxicity of fern extracts against mosquito vectors and beneficial aquatic organisms. Ecotoxicol. Environ. Saf. 2018, 161, 221–230. DOI: 10.1016/j.ecoenv.2018.05.062.
  • Jana, A.; Biswas, S.M. Lactan nonanoic acid, a new substance from cleome viscosa with allelopathic and antimicrobial properties. J. Biosci. 2011, 36, 27–35. DOI: 10.1007/s12038-011-9001-9.
  • Xavier, M.E.C.; Silva, D.C.G.; Macedo, E.S.; Souza, M.A.; Santos, A.F.; Costa, J.G. Potencial Antioxidante e Alelopático de Crataeva tapia L. Div. J. 2019, 4, 306–318. DOI: 10.17648/diversitas-journal-v4i1.646.
  • Bond, C.; Buhl, K.; Stone, D. Citronella General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services, 2013. http://npic.orst.edu/factsheets/citronellagen.html.
  • Bond, C.; Buhl, K.; Stone, D. Neem Oil General Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services, 2012. http://npic.orst.edu/factsheets/neemgen.html.
  • Lewis, S.E.; Brown, A.V. Comparative leaf decomposition rates including a non-native species in an urban Ozark stream. J. Ark. Acad. Sci. 2010, 64, 92–96.
  • IBAMA-Instituto Brasileiro do Meio Ambiente e Dos Recursos Naturais Renováveis. Relatórios de Comercialização Dos Agrotóxicos: Brasília, 2020.
  • Rand, G.M.; Petrocelli, S.R. Fundamentals of Aquatic Toxicology: Methods and Applications. Hemisphere: New York, NY, 1985; 335–373.
  • Costa, C.R.; Olivi, P.; Botta, C.M.R.; Espindola, E.L.G. A Toxicidade em Ambientes Aquáticos: Discussão e Métodos de Avaliação. Quím. Nova 2008, 31, 1820–1830. DOI: 10.1590/S0100-40422008000700038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.