Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 10
219
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Drying and rehydration kinetics of peeled and unpeeled green apple slices (Granny Smith cv)

, , , , & ORCID Icon

References

  • Carpes, S. T.; Bertotto, C.; Bilck, A. P.; Yamashita, F.; Anjos, O.; Bakar Siddique, M. A.; Harrison, S. M.; Brunton, N. P. Bio-Based Films Prepared with Apple Pomace: Volatiles Compound Composition and Mechanical, Antioxidant and Antibacterial Properties. LWT Food Sci. Technol. 2021, 144, 111241. DOI: 10.1016/j.lwt.2021.111241.
  • Argentine Chamber of Integrated Fruit Growers: Argentine Production of Pears and Apples. http://www.cafi.org.ar/nuestra-produccion. 2020. (accessed Dec 15, 2021). In Spanish.
  • Alibas, I.; Zia, M. P.; Yilmaz, A.; Asik, B. B. Drying Kinetics and Quality Characteristics of Green Apple Peel (Mallus communis L. var. “Granny Smith”) Used in Herbal Tea Production. J. Food Process Preserv. 2020, 44, e14332. DOI: 10.1111/jfpp.14332.
  • Manzoor, M.; Anwar, F.; Saari, N.; Ashraf, M. Variations of Antioxidant Characteristics and Mineral Contents in Pulp and Peel of Different Apple (Malus domestica Borkh.) Cultivars from Pakistan. Molecules 2012, 17, 390–407. DOI: 10.3390/molecules17010390.
  • Figuerola, F.; Hurtado, M. L.; Estévez, A. M.; Chiffelle, I.; Asenjo, F. Fibre Concentrates from Apple Pomace and Citrus Peel as Potential Fibre Sources for Food Enrichment. Food Chem. 2005, 91, 395–401. DOI: 10.1016/j.foodchem.2004.04.036.
  • Wolfe, K. L.; Liu, R. H. Apple Peels as a Value-Added Food Ingredient. J. Agric. Food Chem. 2003, 56, 1, 1676–1683.
  • Veena, G.; Challa, S. R.; Palatheeya, S.; Prudhivi, R.; Kadari, A. Granny Smith Apple Extract Lowers Inflammation and Improves Antioxidant Status in L-Arginine-Induced Exocrine Pancreatic Dysfunction in Rats. tjps 2021, 18, 262–270. DOI: 10.4274/tjps.galenos.2020.92145.
  • Dried Fruits Market: Global Industry Analysis, Trends, Market Size, and Forecasts up to 2024. https://www.researchandmarkets.com/reports/4757308. 2019. (accessed Aug 18, 2022).
  • International Trade Centre (ITC). https://www.trademap.org. 2018. (accessed Jan 18, 2022).
  • Ngamwonglumlert, L.; Devahastin, S. Microstructure and Its Relationship with Quality and Storage Stability of Dried Foods. In Food Microstructure and Its Relationship with Quality and Stability, Devahastin, S., Ed.; Elsevier Woodhead Publishing: Amsterdam, 2018; pp 139–159.
  • Baldán, Y.; Fernandez, A.; Reyes Urrutia, A.; Fabani, M. P.; Rodríguez, R.; Mazza, G. Non-Isothermal Drying of Bio-Wastes: Kinetic Analysis and Determination of Effective Moisture Diffusivity. J. Environ. Manage. 2020, 262, 110348. DOI: 10.1016/j.jenvman.2020.110348.
  • Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and Physical Properties of Blueberries, Tart Cherries, Strawberries, and Cranberries as Affected by Different Drying Methods. Food Chem. 2018, 262, 242–250. DOI: 10.1016/j.foodchem.2018.04.047.
  • Salimi Hizaji, A.; Maghsoudlou, Y.; Jafari, S. M. Application of Peleg Model to Study Effect of Water Temperature and Storage Time on Rehydration Kinetics of Air-Dried Potato Cubes. Latin Am. Appl. Res. 2010, 40, 131–136.
  • Shrestha, L.; Crichton, S. O. J.; Kulig, B.; Kiesel, B.; Hensel, O.; Sturm, B. Comparative Analysis of Methods and Model Prediction Performance Evaluation for Continuous Online Non-Invasive Quality Assessment during Drying of Apples from Two Cultivars. Therm. Sci. Eng. Prog. 2020, 18, 100461. DOI: 10.1016/j.tsep.2019.100461.
  • Kidoń, M.; Grabowska, J. Bioactive Compounds, Antioxidant Activity, and Sensory Qualities of Red-Fleshed Apples Dried by Different Methods. LWT Food Sci. Technol. 2021, 136, 110302. DOI: 10.1016/j.lwt.2020.110302.
  • Raponi, F.; Moscetti, R.; Nallan Chakravartula, S. S.; Fidaleo, M.; Massantini, R. Monitoring the Hot-Air Drying Process of Organically Grown Apples (cv. Gala) Using Computer Vision. Biosyst. Eng. 2021. DOI: 10.1016/j.biosystemseng.2021.07.005.
  • Ma, Q.; Bi, J.; Yi, J.; Wu, X.; Li, X.; Zhao, Y. Stability of Phenolic Compounds and Drying Characteristics of Apple Peel as Affected by Three Drying Treatments. Food Sci. Hum. Wellness 2021, 10, 174–182. DOI: 10.1016/j.fshw.2021.02.006.
  • Chen, A.; Achkar, G. E.; Liu, B.; Bennacer, R. Experimental Study on Moisture Kinetics and Microstructure Evolution in Apples during High Power Microwave Drying Process. J. Food Eng. 2021, 292, 110362. DOI: 10.1016/j.jfoodeng.2020.110362.
  • Eminoğlu, M. B.; Yegül, U.; Sacilik, K. Drying Characteristics of Blackberry Fruits in a Convective Hot-Air Dryer. horts 2019, 54, 1546–1550. DOI: 10.21273/HORTSCI14201-19.
  • Lentzou, D.; Boudouvis, A. G.; Karathanos, V. T.; Xanthopoulos, G. A Moving Boundary Model for Fruit Isothermal Drying and Shrinkage: An Optimization Method for Water Diffusivity and Peel Resistance Estimation. J. Food Eng. 2019, 263, 299–310. DOI: 10.1016/j.jfoodeng.2019.07.010.
  • Fernández, A.; Román, C.; Mazza, G.; Rodríguez, R. Determination of Effective Moisture Diffusivity and Thermodynamic Properties Variation of Regional Wastes under Different Atmospheres. Case Stud. Therm. Eng. 2018, 12, 248–257.
  • Niaz, T.; Imran, M. Diffusion Kinetics of Nisin from Composite Coatings Reinforced with Nano-Rhamnosomes. J. Food Eng. 2021, 288, 110143. DOI: 10.1016/j.jfoodeng.2020.110143.
  • Golpour, I.; Kaveh, M.; Chayjan, R. A.; Guiné, R. P. Optimization of Infrared-Convective Drying of White Mulberry Fruit Using Response Surface Methodology and Development of a Predictive Model through Artificial Neural Network. Int. J. Fruit Sci. 2020, 20, S1015–S1035. DOI: 10.1080/15538362.2020.1774474.
  • Maleki, M.; Shahidi, F.; Varidi, M. J.; Azarpazhooh, E. Hot Air-Drying Kinetics of Novel Functional Carrot Snack: Impregnated Using Polyphenolic Rich Osmotic Solution with Ultrasound Pretreatment. J. Food Process Eng. 2020, 43, e13331. DOI: 10.1111/jfpe.13331.
  • Bezerra, C. V.; Meller da Silva, L. H.; Corrêa, D. F.; Rodrigues, A. M. A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of Passion Fruit Peel. Int. J. Heat Mass Transf. 2015, 85, 750–755. DOI: 10.1016/j.ijheatmasstransfer.2015.02.027.
  • Dincer, I.; Dost, S. An Analytical Model for Moisture Diffusion in Solid Objects during Drying. Drying Technol. 1995, 13, 425–435. DOI: 10.1080/07373939508916962.
  • Beigi, M. Influence of Drying Air Parameters on Mass Transfer Characteristics of Apple Slices. Heat Mass Transfer 2016, 52, 2213–2221. DOI: 10.1007/s00231-015-1735-8.
  • Senaadera, W.; Adiletta, G.; Önal, B.; Di Matteo, M.; Russo, P. Influence of Different Hot Air Drying Kinetics, Shrinkage, and Colour of Persimmon Slices. Foods 2020, 9, 101–112. DOI: 10.3390/foods9010101.
  • Tepe, T. K.; Tepe, B. The Comparison of Drying and Rehydration Characteristics of Intermittent-Microwave and Hot-Air Dried-Apple Slices. Heat Mass Transfer 2020, 56, 3047–3057. DOI: 10.1007/s00231-020-02907-9.
  • Krokida, M. K.; Marinos-Kouris, D. Rehydration Kinetics of Dehydrated Products. J. Food Eng. 2003, 57, 1–7. DOI: 10.1016/S0260-8774(02)00214-5.
  • Dadali, G.; Demirhan, E.; Özbek, B. Effect of Drying Conditions on Rehydration Kinetics of Microwave Dried Spinach. Food Bioprod. Process. 2008, 86, 235–241. DOI: 10.1016/j.fbp.2008.01.006.
  • Fabani, M. P.; Román, M. C.; Rodriguez, R.; Mazza, G. Minimization of the Adverse Environmental Effects of Discarded Onions by Avoiding Disposal through Dehydration and Food-Use. J. Environ. Manage 2020, 271, 110947. DOI: 10.1016/j.jenvman.2020.110947.
  • Górnicki, K.; Choińska, A.; Kaleta, A. Effect of Variety on Rehydration Characteristics of Dried Apples. Processes 2020, 8, 1454, 1–21. DOI: 10.3390/pr8111454.
  • Lopez-Quiroga, E.; Prosapio, V.; Fryer, P. J.; Norton, I. T.; Bakalis, S. Model Discrimination for Drying and Rehydration Kinetics of Freeze-Dried Tomatoes. J. Food Process Eng. 2020, 43, e13192. DOI: 10.1111/jfpe.13192.
  • Adiletta, G.; Wijerathen, C.; Senadeera, W.; Russo, P.; Crescitelli, A.; Di Matteo, M. Dehydration and Rehydration Characteristics of Pretreated Pumpkin Slices. Ital. J. Food Sci. 2018, 30, 684–706.
  • Wang, J.; Bai, T.; Wang, D.; Fang, X.; Xue, L.; Zheng, Z.; Gao, Z.; Xiao, H. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Drying Technol. 2019, 37, 301–311. DOI: 10.1080/07373937.2017.1423325.
  • AOAC: Official methods of analysis, 18 th. Ed. 2010.
  • Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. DOI: 10.1038/nmeth.2089.
  • Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1217. DOI: 10.1111/j.1365-2621.1988.tb13565.x.
  • Marabi, A.; Livings, S.; Jacobson, M.; Saguy, I. S. Normalized Weibull Distribution for Modelling Rehydration of Food Particulates. Eur. Food Res. Technol. 2003, 217, 311–318. DOI: 10.1007/s00217-003-0719-y.
  • Benseddik, A.; Azzi, A.; Zidoune, M. N.; Khanniche, R.; Besombes, C. Empirical and Diffusion Models of Rehydration Process of Differently Dried Pumpkin Slices. J. Saudi Soc. Agric. Sci. 2019, 18, 401–410. DOI: 10.1016/j.jssas.2018.01.003.
  • Ilicali, C.; Icier, F. Modified Dincer and Dost Method for Predicting the Mass Transfer Coefficients in Solids. Int. J. Food Eng. 2016, 12, 101–105. DOI: 10.1515/ijfe-2015-0095.
  • Shewale, S. R.; Rajoriya, D.; Hebbar, H. U. Low Humidity Air Drying of Apple Slices: Effect of EMR Pretreatment on Mass Transfer Parameters, Energy Efficiency and Quality. Innovat. Food Sci. Emerg. Technol. 2019, 55, 1–10. DOI: 10.1016/j.ifset.2019.05.006.
  • Dincer, I.; Yildiz, M. Modelling of Thermal and Moisture Diffusions in Cylindrically Shaped Sausages during Frying. J. Food Eng. 1996, 28, 35–44. DOI: 10.1016/0260-8774(95)00026-7.
  • Baldán, Y.; Riveros, M.; Fabani, M. P.; Rodríguez, R. Grape Pomace Powder Valorization: A Novel Ingredient to Improve the Nutritional Quality of Gluten-Free Muffins. Biomass Conv. Bioref. 2021. DOI: 10.1007/s13399-021-01829-8.
  • Fabani, M. P.; Capossio, J. P.; Román, M. C.; Zhu, W.; Rodríguez, R.; Mazza, G. Producing Non-Traditional Flour from Watermelon Rind Pomace: Artificial Neural Network (ANN) Modeling of the Drying Process. J. Environ. Manage. 2021, 281, 111915. DOI: 10.1016/j.jenvman.2020.111915.
  • Mohammadi, I.; Tabatabaekoloor, R.; Motevali, A. Effect of Air Recirculation and Heat Pump on Mass Transfer and Energy Parameters in Drying of Kiwifruit Slices. Energy 2019, 170, 149–158. DOI: 10.1016/j.energy.2018.12.099.
  • Mphahlele, R. R.; Pathare, P. B.; Linus Opara, U. Drying Kinetics of Pomegranate Fruit Peel (cv. Wonderful). Sci. Afr. 2019, 5, e00145. DOI: 10.1016/j.sciaf.2019.e00145.
  • Pham, Q. T.; Bulens, I.; Ho, T. Q.; Verlinden, B. E.; Verboven, P.; Nicolai, B. Simultaneous Measurement of Ethane Diffusivity and Skin Resistance of ‘Jonica’ Apples by Efflux Experiment. J. Food Eng. 2009, 95, 471–478. DOI: 10.1016/j.jfoodeng.2009.06.007.
  • Kaya, A.; Aydin, O.; Kolayli, S. Effect of Different Drying Conditions on the Vitamin C (Ascorbic Acid) Content of Hayward Kiwifruits (Actinidia deliciosa Planch). Food Bioprod. Process. 2010, 88, 165–173. DOI: 10.1016/j.fbp.2008.12.001.
  • Onwude, D. I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G.; Kumar, C. Modelling of Coupled Heat and Mass Transfer for Combined Infrared and Hot-Air Drying of Sweet Potato. J. Food Eng. 2018, 228, 12–24. DOI: 10.1016/j.jfoodeng.2018.02.006.
  • Bualuang, O.; Onwude, D. I.; Uso, A.; Peerachaakkarachai, K.; Mora, P.; Dulsamphan, S.; Sena, P. Determination of Drying Kinetics, Some Physical, and Antioxidant Properties of Papaya Seeds Undergoing Microwave Vacuum Drying. J. Food Process Eng. 2019, 42, e13176. DOI: 10.1111/jfpe.13176.
  • Giner, S. A.; Irigoyen, R. M. T.; Cicuttín, S.; Fiorentini, C. The Variable Nature of Biot Numbers in Food Drying. J. Food Eng. 2010, 101, 214–222. DOI: 10.1016/j.jfoodeng.2010.07.005.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Demiray, E.; Tulek, Y. Effect of Temperature on Water Diffusion during Rehydration of Sun-Dried Red Pepper (Capsicum annuum L.). Heat Mass Transfer 2017, 53, 1829–1834. DOI: 10.1007/s00231-016-1940-0.
  • Zielinska, M.; Markowski, M. The Influence of Microwave-Assisted Drying Techniques on the Rehydration Behavior of Blueberries (Vaccinium corymbosum L.). Food Chem. 2016, 196, 1188–1196. DOI: 10.1016/j.foodchem.2015.10.054.
  • Zura-Bravo, L.; Ah-hen, K.; Vega-Gálvez, A.; García-Segovia, P.; Lemus-Mondaca, R. Effect of Rehydration Temperature on Functional Properties, Antioxidant Capacity and Structural Characteristics of Apple (Granny Smith) Slices in Relation to Mass Transfer Kinetics. J. Food Process Eng. 2013, 36, 559–571. DOI: 10.1111/jfpe.12018.
  • Moreira, R.; Chenlo, F.; Chaguri, L.; Fernandes, C. Water Absorption, Texture, and Color Kinetics of Air-Dried Chestnuts during Rehydration. J. Food Eng. 2008, 86, 584–594. DOI: 10.1016/j.jfoodeng.2007.11.012.
  • Goula, A. M.; Adamopoulos, K. G. Modeling the Rehydration Process of Dried Tomato. Drying Technol. Int. J. 2009, 27, 1078–1088. DOI: 10.1080/07373930903218677.
  • Akar, G.; Mazi, I. Color Change, Ascorbic Acid Degradation Kinetics, and Rehydration Behavior of Kiwifruit as Affected by Different Drying Methods. J. Food Process Eng. 2019, 42, e13011. DOI: 10.1111/jfpe.13011.
  • Tamarit-Pino, Y.; Batías-Montes, J. M.; Segura-Ponce, L. A.; Díaz-Álvarez, R. E.; Guzmán-Meza, M. F.; Quevedo-León, R. A. Effect of Electrohydrodynamic Pretreatment on Drying Rate and Rehydration Properties of Chilean Sea Cucumber (Athyonidium chilensis). Food Bioprod. Process. 2020, 123, 284–295. DOI: 10.1016/j.fbp.2020.07.012.
  • Dak, M.; Pareek, N. K. Effective Moisture Diffusivity of Pomegranate Arils under Going Microwave-Vacuum Drying. J. Food Eng. 2014, 122, 117–121. DOI: 10.1016/j.jfoodeng.2013.08.040.
  • Sharma, G. P.; Prasad, S. Effective Moisture Diffusivity of Garlic Cloves Undergoing Microwave-Convective Drying. J. Food Eng. 2004, 65, 609–617. DOI: 10.1016/j.jfoodeng.2004.02.027.
  • Sutar, P. P.; Prasad, S. Modeling Microwave Vacuum Drying Kinetics and Moisture Diffusivity of Carrot Slices. Drying Technol. 2007, 25, 1695–1702. DOI: 10.1080/07373930701590947.
  • Mujumdar, A. S. Transport Properties of Foods. Drying Technol. 2001, 19, 2383–2384. DOI: 10.1081/DRT-100107506.
  • Corrêa, P. C.; Horta, F. M., Oliveira, G. H. H.; Goneli, A. L. D.; Resende, O.; Campos, S. d. C. Mathematical Modeling of the Drying Process of Corn Ears. Acta Scientarium. Agron. 2011, 33, 575–581.
  • Mota, C. L.; Luciano, C.; Dias, A.; Barroca, M. J.; Guiné, R. P. F. Convective Drying of Onion: Kinetics and Nutritional Evaluation. Food Bioprod. Process. 2010, 88, 115–123. DOI: 10.1016/j.fbp.2009.09.004.
  • Rahman, M. S.; Al-Zakwani, I.; Guizani, N. Pore Formation in Apple during Air-Drying as a Function of Temperature: porosity and Poresize Distribution. J. Sci. Food Agric. 2005, 85, 979–989. DOI: 10.1002/jsfa.2056.
  • Ján, B. M.; Davide, S. Selected Quantitative Parameters Comparison of Apples from Bio- and Conventional Production. AJS 2018, 5, 343–354. DOI: 10.30958/ajs.5-4-3.
  • Ozturk, I.; Bastaban, S.; Ercisli, S.; Kalkan, F. Physical and Chemical Properties of Three Late Ripening Apple Cultivars. Int. Agrophys. 2010, 24, 357–361.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.