Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 57, 2022 - Issue 12
262
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Dynamic light scattering and zeta-potential as a tool for understanding the mechanism of pesticides binding toward individual components of transition metal nanoparticles and graphene oxide hybrids

, , , , , , , & ORCID Icon show all

References

  • Al-Saleh, I. A. Pesticides: A review article. J. Environ. Pathol. Toxicol. Oncol. 1994, 13, 151–161.
  • Mahmood, I.; et al. Effects of Pesticides on Environment. In Plant, Soil and Microbes. 2016, Springer, New York, p. 253–269.
  • Sulaiman, I. C.; et al. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchim. Acta. 2020, 187, 1–22.
  • Zou, A.; Yang, Y.; Cheng, J.; Garamus, V. M.; Li, N. Construction and characterization of a novel sustained-release delivery system for hydrophobic pesticides using biodegradable polydopamine-based microcapsules. J. Agric. Food Chem. 2018, 66, 6262–6268. DOI: 10.1021/acs.jafc.8b00877.
  • Chin, C.-P.; Lan, C.-W.; Wu, H.-S. Study on the performance of lambda cyhalothrin microemulsion with biodiesel as an alternative solvent. Ind. Eng. Chem. Res. 2012, 51, 4710–4718. DOI: 10.1021/ie201151p.
  • Kidd, H.; James, D. R. The agrochemicals handbook; The Royal Society of Chemistry, Cambridge: United Kingdom, 1991.
  • Gong, J.-L.; Gong, F.-C.; Kuang, Y.; Zeng, G.-M.; Shen, G.-L.; Yu, R.-Q. Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer. Anal. Bioanal. Chem. 2004, 379, 302–307. DOI: 10.1007/s00216-004-2568-3.
  • Bradberry, S. M.; Cage, S. A.; Proudfoot, A. T.; Vale, J. A. Poisoning due to pyrethroids. Toxicol. Rev. 2005, 24, 93–106. DOI: 10.2165/00139709-200524020-00003.
  • Tan, Y.; Biondi, A.; Desneux, N.; Gao, X.-W. Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology 2012, 21, 1989–1997. DOI: 10.1007/s10646-012-0933-0.
  • He, Y.; Zhao, J.; Zheng, Y.; Desneux, N.; Wu, K. Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 2012, 21, 1291–1300. DOI: 10.1007/s10646-012-0883-6.
  • Ge, W.; Yan, S.; Wang, J.; Zhu, L.; Chen, A.; Wang, J. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J. Agric. Food Chem. 2015, 63, 1856–1862. DOI: 10.1021/jf504895h.
  • Tomizawa, M.; Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 247–268.
  • Wang, C.-J.; Wang, G.; Wang, X.-Y.; Liu, M.; Chuai, M.; Lee, K. K. H.; He, X.-S.; Lu, D.-X.; Yang, X. Imidacloprid exposure suppresses neural crest cells generation during early chick embryo development. J. Agric. Food Chem. 2016, 64, 4705–4715. DOI: 10.1021/acs.jafc.6b01478.
  • Brown, H. M. Mode of action, crop selectivity, and soil relations of the sulfonylurea herbicides. Pestic. Sci. 1990, 29, 263–281. DOI: 10.1002/ps.2780290304.
  • Levine, M. Fluorescence-based sensing of pesticides using supramolecular chemistry. Front. Chem. 2021, 9, 27. DOI: 10.3389/fchem.2021.616815.
  • Kermani, M.; Jafari, M. T.; Saraji, M. Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Microchim. Acta 2019, 186, 1–11. DOI: 10.1007/s00604-018-3215-6.
  • Zou, N.; Gu, K.; Liu, S.; Hou, Y.; Zhang, J.; Xu, X.; Li, X.; Pan, C. Rapid analysis of pesticide residues in drinking water samples by dispersive solid‐phase extraction based on multiwalled carbon nanotubes and pulse glow discharge ion source ion mobility spectrometry. J. Sep. Sci. 2016, 39, 1202–1212. DOI: 10.1002/jssc.201501258.
  • Bigdeli, A.; Ghasemi, F.; Abbasi-Moayed, S.; Shahrajabian, M.; Fahimi-Kashani, N.; Jafarinejad, S.; Farahmand Nejad, M. A.; Hormozi-Nezhad, M. R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances—A review. Anal. Chim. Acta. 2019, 1079, 30–58. DOI: 10.1016/j.aca.2019.06.035.
  • Burratti, L.; Ciotta, E.; De Matteis, F.; Prosposito, P. Metal nanostructures for environmental pollutant detection based on fluorescence. Nanomaterials 2021, 11, 276. DOI: 10.3390/nano11020276.
  • Kumar, P.; Kim, K.-H.; Deep, A. Recent advancements in sensing techniques based on functional materials for organophosphate pesticides. Biosens. Bioelectron. 2015, 70, 469–481. DOI: 10.1016/j.bios.2015.03.066.
  • Alami, A. E.; Lagarde, F.; Huo, Q.; Zheng, T.; Baitoul, M.; Daniel, P. Acetylcholine and acetylcholinesterase inhibitors detection using gold nanoparticles coupled with dynamic light scattering. Sensors Int. 2020, 1, 100007. DOI: 10.1016/j.sintl.2020.100007.
  • Walia, S.; Acharya, A. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium. J. Nanopart. Res. 2014, 16, 2778. DOI: 10.1007/s11051-014-2778-3.
  • Ghoto, S. A.; Khuhawar, M. Y.; Jahangir, T. M.; Mangi, J. D. Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticides. J. Nanostruct. Chem. 2019, 9, 77–93. DOI: 10.1007/s40097-019-0299-4.
  • Khosropour, H.; Rezaei, B.; Rezaei, P.; Ensafi, A. A. Ultrasensitive voltammetric and impedimetric aptasensor for diazinon pesticide detection by VS2 quantum dots-graphene nanoplatelets/carboxylated multiwalled carbon nanotubes as a new group nanocomposite for signal enrichment. Anal. Chim. Acta. 2020, 1111, 92–102. DOI: 10.1016/j.aca.2020.03.047.
  • Chen, N.; Liu, H.; Zhang, Y.; Zhou, Z.; Fan, W.; Yu, G.; Shen, Z.; Wu, A. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens. Actuators, B 2018, 255, 3093–3101. DOI: 10.1016/j.snb.2017.09.134.
  • Shikha, S.; Dureja, S.; Sapra, R.; Babu, J.; Haridas, V.; Pattanayek, S. K. Interaction of borohydride stabilized silver nanoparticles with sulfur-containing organophosphates. RSC Adv. 2021, 11, 32286–32294. DOI: 10.1039/d1ra06911j.
  • Logan, N.; Haughey, S. A.; Liu, L.; Burns, D. T.; Quinn, B.; Cao, C.; Elliott, C. T. Handheld SERS coupled with QuEChERs for the sensitive analysis of multiple pesticides in basmati rice. NPJ Sci. Food. 2022, 6, 3. DOI: 10.1038/s41538-021-00117-z.
  • Babazadeh, S.; Moghaddam, P. A.; Keshipour, S.; Mollazade, K. Colorimetric sensing of imidacloprid in cucumber fruits using a graphene quantum Dot/Au (III) chemosensor. Sci. Rep. 2020, 10, 14327. DOI: 10.1038/s41598-020-71349-4.
  • Baek, S. H.; Lee, S. W.; Kim, E. J.; Shin, D.-H.; Lee, S.-W.; Park, T. J. Portable agrichemical detection system for enhancing the safety of agricultural products using aggregation of gold nanoparticles. ACS Omega. 2017, 2, 988–993. DOI: 10.1021/acsomega.6b00477.
  • Ashrafi Tafreshi, F.; Fatahi, Z.; Ghasemi, S. F.; Taherian, A.; Esfandiari, N. Ultrasensitive fluorescent detection of pesticides in real sample by using green carbon dots. PLoS One. 2020, 15, e0230646. DOI: 10.1371/journal.pone.0230646.
  • Shaikh, A. J.; Batool, M.; Yameen, M. A.; Waseem, A. Plasmonic effects, size and biological activity relationship of Au–Ag alloy nanoparticles. J. Nano. Res. 2018, 54, 98–111. DOI: 10.4028/www.scientific.net/JNanoR.54.98.
  • Jawad, M.; et al. Plasmonic effects and size relation of gold–platinum alloy nanoparticles. Adv. Nano. Res. 2019, 7, 169.
  • Jawad, M.; Khan, A. F.; Waseem, A.; Kamboh, A. H.; Mohsin, M.; Shahzad, S. A.; Shah, S. H.; Mathur, S.; Shaikh, A. J. Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells. Appl. Nanosci. 2020, 10, 485–497. DOI: 10.1007/s13204-019-01134-x.
  • Mohsin, M.; Jawad, M.; Yameen, M. A.; Waseem, A.; Shah, S. H.; Shaikh, A. J. An insight into the coating behavior of bimetallic silver and gold core-shell nanoparticles. Plasmonics 2020, 15, 1599–1612. DOI: 10.1007/s11468-020-01166-y.
  • Abbas, Z.; Agada, F.; Kamboh, A. H.; Khan, A. M.; Farooq, U.; Bilal, M.; Arshad, M.; Shaikh, A. J. A simplistic approach to evaluate the power conversion efficiencies for hybrid charge transport layers in open-air fabricated perovskite solar cells. J. Mater. Res. 2022, 37, 1323–1340. DOI: 10.1557/s43578-022-00537-x.
  • Agada, F.; Abbas, Z.; Bakht, K.; Khan, A. M.; Farooq, U.; Bilal, M.; Arshad, M.; Khan, A. F.; Kamboh, A. H.; Shaikh, A. J.; et al. A step forward toward quantum dots based perovskite solar cells in an ambient environment. Opt. Mater. 2022, 129, 112538. DOI: 10.1016/j.optmat.2022.112538.
  • Shaikh, A. J.; Rabbani, F.; Sherazi, T. A.; Iqbal, Z.; Mir, S.; Shahzad, S. A. Binding strength of porphyrin − gold nanoparticle hybrids based on number and type of linker moieties and a simple method to calculate inner filter effects of gold nanoparticles using fluorescence spectroscopy. J. Phys. Chem. A 2015, 119, 1108–1116. DOI: 10.1021/jp510924n.
  • Shaikh, A. J. Exploring the direction of charge transfer in porphyrin—PbSe quantum dot hybrids. ChemistrySelect 2016, 1, 1678–1686. DOI: 10.1002/slct.201600180.
  • Wu, S.; Lan, X.; Cui, L.; Zhang, L.; Tao, S.; Wang, H.; Han, M.; Liu, Z.; Meng, C. Application of graphene for preconcentration and highly sensitive stripping voltammetric analysis of organophosphate pesticide. Anal. Chim. Acta. 2011, 699, 170–176. DOI: 10.1016/j.aca.2011.05.032.
  • Nasir, M. Z. M.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M. Two-dimensional 1T-phase transition metal dichalcogenides as nanocarriers to enhance and stabilize enzyme activity for electrochemical pesticide detection. ACS Nano. 2017, 11, 5774–5784. DOI: 10.1021/acsnano.7b01364.
  • Zhang, M.; Zhao, H. T.; Xie, T. J.; Yang, X.; Dong, A. J.; Zhang, H.; Wang, J.; Wang, Z. Y. Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sens. Actuators, B 2017, 252, 991–1002. DOI: 10.1016/j.snb.2017.04.159.
  • Chao, M.; Chen, M. Electrochemical determination of phoxim in food samples employing a graphene-modified glassy carbon electrode. Food Anal. Methods 2014, 7, 1729–1736. DOI: 10.1007/s12161-014-9813-y.
  • Liu, M.; Zhang, L.; Jiang, S.; Fu, Z. A facile luminescence resonance energy transfer method for detecting cyano-containing pesticides in herbal medicines. Microchem. J. 2020, 152, 104451. DOI: 10.1016/j.microc.2019.104451.
  • Abbasi, Z.; Saeed, W.; Shah, S. M.; Shahzad, S. A.; Bilal, M.; Khan, A. F.; Shaikh, A. J. Binding efficiency of functional groups towards noble metal surfaces using graphene oxide–metal nanoparticle hybrids. Colloids Surf. A 2021, 611, 125858. DOI: 10.1016/j.colsurfa.2020.125858.
  • Saeed, W.; Abbasi, Z.; Majeed, S.; Shahzad, S. A.; Khan, A. F.; Shaikh, A. J. An insight into the binding behavior of graphene oxide and noble metal nanoparticles. J. Appl. Phys. 2021, 129, 125302. DOI: 10.1063/5.0041894.
  • Ahmad, S.; Ayoub, M. H.; Khan, A. M.; Waseem, A.; Yasir, M.; Khan, M. S.; Bajwa, T. M.; Shaikh, A. J. Diverse comparative studies for preferential binding of graphene oxide and transition metal oxide nanoparticles. Colloids Surf. A 2022, 647, 129057. DOI: 10.1016/j.colsurfa.2022.129057.
  • Shaikh, A. J.; Aman, N.; Yameen, M. A. A new methodology for simultaneous comparison and optimization between nanoparticles and their drug conjugates against various multidrug-resistant bacterial strains. Asian Biomed. 2019, 13, 149–162. DOI: 10.1515/abm-2019-0054.
  • Klačanová, K.; Fodran, P.; Šimon, P.; Rapta, P.; Boča, R.; Jorík, V.; Miglierini, M.; Kolek, E.; Čaplovič, L. '. Formation of Fe (0)-nanoparticles via reduction of Fe (II) compounds by amino acids and their subsequent oxidation to iron oxides. J. Chem. 2013, 2013, 1–10. DOI: 10.1155/2013/961629.
  • Bala, T.; Arumugam, S. K.; Pasricha, R.; Prasad, B. L. V.; Sastry, M. Foam-based synthesis of cobalt nanoparticles and their subsequent conversion to Co core Ag shell nanoparticles by a simple transmetallation reaction. J. Mater. Chem. 2004, 14, 1057–1061. DOI: 10.1039/b315022b.
  • Garza-Cervantes, J. A.; Escárcega-González, C. E.; Barriga Castro, E. D.; Mendiola-Garza, G.; Marichal-Cancino, B. A.; López-Vázquez, M. A.; Morones-Ramirez, J. R. Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent. Int. J. Nanomed. 2019, 14, 2557–2571. DOI: 10.2147/IJN.S196470.
  • Khan, K.; Shaikh, A. J.; Siddiq, M.; Sherazi, T. A.; Nawaz, M. In situ formation of copper nanoparticles in a p(NIPAM-VAA-AAm) terpolymer microgel that retains the swelling behavior of microgels. J. Polym. Eng. 2016, 36, 287–292. DOI: 10.1515/polyeng-2015-0169.
  • Wu, S.-H.; Chen, D.-H. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci. 2004, 273, 165–169. DOI: 10.1016/j.jcis.2004.01.071.
  • Srivastav, A. K. On the temperature dependent magnetization in dual-phase co nanowires confinedly electrodeposited inside nanoporous alumina membrane. J. Cryst. Growth 2021, 562, 126084. DOI: 10.1016/j.jcrysgro.2021.126084.
  • El-Shafai, N. M.; Abdelfatah, M. M.; El-Khouly, M. E.; El-Mehasseb, I. M.; El-Shaer, A.; Ramadan, M. S.; Masoud, M. S.; El-Kemary, M. A. Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@ Fe3O4): electrochemical properties and applications for removal heavy metals, pesticide and solar cell. Appl. Surf. Sci. 2020, 506, 144896. DOI: 10.1016/j.apsusc.2019.144896.
  • de Paula, T. N. M.; et al. Behavior of two classes of organic contaminants in the presence of graphene oxide: Ecotoxicity, physicochemical characterization and theoretical calculations. Sci. Total Environ. 2022, 822, 153515. DOI: 10.1016/j.scitotenv.2022.153515.
  • Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. DOI: 10.1016/j.jconrel.2016.06.017.
  • Hummers W. S.; Jr,.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.
  • Wang, C.-B.; Zhang, W.-x. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156.
  • Guo, F.; Zheng, H.; Yang, Z.; Qian, Y. Synthesis of cobalt nanoparticles in ethanol hydrazine alkaline system (EHAS) at room temperature. Mater. Lett. 2002, 56, 906–909.
  • Wu, S.-H.; Chen, D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 2003, 259, 282–286.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.