Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 1
249
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesoporous silica nanoparticles adsorb aflatoxin B1 and reduce mycotoxin-induced cell damage

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Sarmast, E.; Fallah, A. A.; Jafari, T.; Mousavi Khaneghah, A. Occurrence and Fate of Mycotoxins in Cereals and Cereal-Based Products: A Narrative Review of Systematic Reviews and Meta-Analyses Studies. Curr. Opin. Food Sci. 2021, 39, 68–75. DOI: 10.1016/j.cofs.2020.12.013.
  • Haque, M. A.; Wang, Y.; Shen, Z.; Li, X.; Saleemi, M. K.; He, C. Mycotoxin Contamination and Control Strategy in Human, Domestic Animal and Poultry: A Review. Microb. Pathog. 2020, 142, 104095. DOI: 10.1016/j.micpath.2020.104095.
  • IARC. Some Naturally Occurring Substances: food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monog. Eval. Carcinog. Risks Hum. 1993, 56, 1–599.
  • Pitt, J.; Hocking, A. D. Aspergillus and Related Teleomorphs In Fungi and Food Spoilage; Springer New York: US, 2009; pp 1–519. DOI: 10.1007/978-0-387-92207-2_1.
  • Riba, A.; Bouras, N.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Aspergillus Section Flavi and Aflatoxins in Algerian Wheat and Derived Products. Food Chem. Toxicol. 2010, 48, 2772–2777. DOI: 10.1016/j.fct.2010.07.005.
  • González-Jartín, J. M.; Castro Alves, L. d.; Alfonso, A.; Piñeiro, Y.; Vilar, S. Y.; Gomez, M. G.; Osorio, Z. V.; Sainz, M. J.; Vieytes, M. R.; Rivas, J.; Botana, L. M. Detoxification Agents Based on Magnetic Nanostructured Particles as a Novel Strategy for Mycotoxin Mitigation in Food. Food Chem. 2019, 294, 60–66. DOI: 10.1016/j.foodchem.2019.05.013.
  • Wang, G.; Xi, Y.; Lian, C.; Sun, Z.; Zheng, S. Simultaneous Detoxification of Polar Aflatoxin B1 and Weak Polar Zearalenone from Simulated Gastrointestinal Tract by Zwitterionic Montmorillonites. J. Hazard. Mater. 2019, 364, 227–237. DOI: 10.1016/j.jhazmat.2018.09.071.
  • Nones, J.; Nones, J.; Riella, H. G.; Kuhnen, N. C.; Trentin, A. Bentonite Protects Neural Crest Stem Cells from Death Caused by Aflatoxin B1. Appl. Clay Sci. 2015, 104, 119–127. DOI: 10.1016/j.clay.2014.11.018.
  • Nones, J.; Solhaug, A.; Eriksen, G. S.; Macuvele, D. LP.; Poli, A.; Soares, C.; Trentin, A. G.; Riella, H. G.; Nones, J. Bentonite Modified with Zinc Enhances Aflatoxin B1 Adsorption and Increase Survival of Fibroblasts (3T3) and Epithelial Colorectal Adenocarcinoma Cells (Caco-2). J. Hazard. Mater. 2017, 337, 80–89. DOI: 10.1016/j.jhazmat.2017.04.068.
  • Nones, J.; Nones, J.; Poli, A.; Trentin, A. G.; Riella, H. G.; Kuhnen, N. C. Organophilic Treatments of Bentonite Increase the Adsorption of Aflatoxin B1 and Protect Stem Cells against Cellular Damage. Colloids Surf. B Biointerfaces 2016, 145, 555–561. DOI: 10.1016/j.colsurfb.2016.05.061.
  • Nones, J.; Nones, J.; Riella, H. G.; Poli, A.; Trentin, A. G.; Kuhnen, N. C. Thermal Treatment of Bentonite Reduces Aflatoxin B1 Adsorption and Affects Stem Cell Death. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 530–537. DOI: 10.1016/j.msec.2015.05.069.
  • Savi, G. D.; Cardoso, W. A.; Furtado, B. G.; Bortolotto, T.; Agostin, L. O. V.; Da; Nones, J.; Zanoni, E. T.; Montedo, O. R. K.; Angioletto, E. New Ion-Exchanged Zeolite Derivatives: Antifungal and Antimycotoxin Properties against Aspergillus flavus and Aflatoxin B1. Mater. Res. Express 2017, 4, 085401. DOI: 10.1088/2053-1591/aa84a5.
  • Horky, P.; Skalickova, S.; Baholet, D.; Skladanka, J. Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins. Nanomaterials 2018, 8, 727. DOI: 10.3390/nano8090727.
  • Zhou, S.; Zhong, Q.; Wang, Y.; Hu, P.; Zhong, W.; Huang, C.-B.; Yu, Z.-Q.; Ding, C-. D.; Liu, H.; Fu, J. Chemically Engineered Mesoporous Silica Nanoparticles-Based Intelligent Delivery Systems for Theranostic Applications in Multiple Cancerous/Non-Cancerous Diseases. Coord. Chem. Rev. 2022, 452, 214309. DOI: 10.1016/j.ccr.2021.214309.
  • Bharti, C.; Nagaich, U.; Pal, A. K.; Gulati, N. Mesoporous Silica Nanoparticles in Target Drug Delivery System: A Review. Int. J. Pharm. Investig. 2015, 5, 124–133. DOI: 10.4103/2230-973X.160844.
  • Montalvo Quirós, S.; Gómez-Graña, S.; Vallet-Regí, M.; Prados-Rosales, R.; González, B.; Luque-Garcia, J. Mesoporous Silica Nanoparticles Containing Silver as Novel Antimycobacterial Agents against Mycobacterium tuberculosis. Colloids Surf. B Biointerfaces 2021, 197, 111405. DOI: 10.1016/j.colsurfb.2020.111405.
  • Li, Z.; Zhang, Y.; Feng, N. Mesoporous Silica Nanoparticles: Synthesis, Classification, Drug Loading, Pharmacokinetics, Biocompatibility, and Application in Drug Delivery. Expert Opin. Drug Deliv. 2019, 16, 219–237. DOI: 10.1080/17425247.2019.1575806.
  • Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B. S.; Saboury, A. A. Mesoporous Silica Nanoparticles for Therapeutic/Diagnostic Applications. Biomed. Pharmacother. 2019, 109, 1100–1111. DOI: 10.1016/j.biopha.2018.10.167.
  • Fruijtier-Pölloth, C. The Toxicological Mode of Action and the Safety of Synthetic Amorphous Silica—A Nanostructured Material. Toxicology 2012, 294, 61–79. DOI: 10.1016/j.tox.2012.02.001.
  • Li, Y.; Wang, R.; Chen, Z.; Zhao, X.; Luo, X.; Wang, L.; Li, Y.; Teng, F. Preparation of Magnetic Mesoporous Silica from Rice Husk for Aflatoxin B1 Removal: Optimum Process and Adsorption Mechanism. PLOS One 2020, 15, e0238837. DOI: 10.1371/journal.pone.0238837.
  • Pellicer-Castell, E.; Belenguer-Sapiña, C.; Amorós, P.; Herrero-Martínez, J. M.; Mauri-Aucejo, A. R. Bimodal Porous Silica Nanomaterials as Sorbents for an Efficient and Inexpensive Determination of Aflatoxin M1 in Milk and Dairy Products. Food Chem. 2020, 333, 127421. DOI: 10.1016/j.foodchem.2020.127421.
  • Pellicer-Castell, E.; Belenguer-Sapiña, C.; Borràs, V. J.; Amorós, P.; Haskouri, J.; El; Herrero-Martínez, J. M.; Mauri-Aucejo, A. R. Extraction of Aflatoxins by Using Mesoporous Silica (Type UVM-7), and Their Quantitation by HPLC-MS. Mikrochim. Acta 2019, 186, 792. DOI: 10.1007/s00604-019-3958-8.
  • Savi, G. D.; Zanoni, E. T.; Furtado, B. G.; Souza, H. M.; de, Scussel, R.; Machado-de-Ávila, R. A.; Angioletto, E. Mesoporous Silica Nanoparticles Incorporated with Zinc Oxide as a Novel Antifungal Agent against Toxigenic Fungi Strains. J. Environ. Sci. Health B 2022, 57, 176–183. DOI: 10.1080/03601234.2022.2041955.
  • Doadrio, A. L.; Sánchez-Montero, J. M.; Doadrio, J. C.; Salinas, A. J.; Vallet-Regí, M. Mesoporous Silica Nanoparticles as a New Carrier Methodology in the Controlled Release of the Active Components in a Polypill. Eur. J. Pharm. Sci. 2017, 97, 1–8. DOI: 10.1016/j.ejps.2016.11.002.
  • Feuser, P.; Bubniak, E.; Silva, L. D. S.; Viegas, MC. D. S.; Castilho Fernandes, A. D. C.; Ricci-Junior, A.; Nele, E.; Tedesco, M.; Sayer, A. C.; Ara??jo, C.; De, P. H. H. Encapsulation of Magnetic Nanoparticles in Poly(Methyl Methacrylate) by Miniemulsion and Evaluation of Hyperthermia in U87MG Cells. Eur. Polym. J. 2015, 68, 355–365. DOI: 10.1016/j.eurpolymj.2015.04.029.
  • Sarawade, P. B.; Kim, J.-K.; Hilonga, A.; Kim, H. T. Recovery of High Surface Area Mesoporous Silica from Waste Hexafluorosilicic Acid (H2SiF6) of Fertilizer Industry. J. Hazard. Mater. 2010, 173, 576–580. DOI: 10.1016/j.jhazmat.2009.08.125.
  • Trisunaryanti, W.; Larasati, S.; Triyono, T.; Paramesti, C.; Santoso, N. Selective Production of Green Hydrocarbons from the Hydrotreatment of Waste Coconut Oil over Ni- and NiMo-Supported on Amine-Functionalized Mesoporous Silica. Bull. Chem. React. Eng. Catal. 2020, 15, 415–431. DOI: 10.9767/bcrec.15.2.7136.415-431.
  • Music, S.; Filipovic-Vincekovic, N.; Sekovanic, L. Precipitation of Amorphous SiO2 Particles and Their Properties. Braz. J. Chem. Eng. 2011, 28, 89–94.
  • Zulfiqar, U.; Subhani, T.; Husain, S. W. Synthesis of Sílica Nanoparticles from Sodium Sílicate under Alkaline Conditions. J. Sol-Gel Sci. Technol. 2016, 77, 753–758. DOI: 10.1007/s10971-015-3950-7.
  • Han, L.; Zhou, Y.; He, T.; Song, G.; Wu, F.; Jiang, F.; Hu, J. One-Pot Morphology-Controlled Synthesis of Various Shaped Mesoporous Silica Nanoparticles. J. Mater. Sci. 2013, 48, 5718–5726. DOI: 10.1007/s10853-013-7501-8.
  • Travaglini, L.; Cola.; L.; De. Morphology Control of Mesoporous Silica Particles Using Bile Acids as Cosurfactants. Chem. Mater. 2018, 30, 4168–4175. DOI: 10.1021/acs.chemmater.8b01873.
  • Chen, H.; Yang, H.; Xi, Y. Highly Ordered and Hexagonal Mesoporous Silica Materials with Large Specific Surface from Natural Rectorite Mineral. Microporous Mesoporous Mater. 2019, 279, 53–60. DOI: 10.1016/j.micromeso.2018.12.014.
  • Policicchio, A.; Conte, G.; Agostino, R. G.; Caputo, P.; Oliviero Rossi, C.; Godbert, N.; Nicotera, I.; Simari, C. Hexagonal Mesoporous Silica for Carbon Capture: Unrevealing CO2 Microscopic Dynamics by Nuclear Magnetic Resonance. J. CO2 Util. 2022, 55, 101809. DOI: 10.1016/j.jcou.2021.101809.
  • Kumar, S.; Malik, M. M.; Purohit, R. Synthesis of High Surface Area Mesoporous Silica Materials Using Soft Templating Approach. Mater. Today 2018, 5, 4128–4133. DOI: 10.1016/j.matpr.2017.11.673.
  • Gherca, D.; Cojocaru, S.; Roman, T.; Herea, D. D.; Stoian, G.; Lupu, N.; Palamaru, M. N.; Iordan, A. R.; Borhan, A. I. Reversible Thermo-Driven Solid-State Morphological Transformation of Nanotextured Spinel Material. J. Solid State Chem. 2020, 289, 121521. DOI: 10.1016/j.jssc.2020.121521.
  • Zhang, L.; Zhu, W.; Lin, Q.; Han, J.; Jiang, L.; Zhang, Y. Hydroxypropyl-β-Cyclodextrin Functionalized Calcium Carbonate Microparticles as a Potential Carrier for Enhancing Oral Delivery of Water-Insoluble Drugs. Int. J. Nanomedicine 2015, 10, 3291–3302. DOI: 10.2147/IJN.S78814.
  • Kachbouri, S.; Mnasri, N.; Elaloui, E.; Moussaoui, Y. Tuning Particle Morphology of Mesoporous Silica Nanoparticles for Adsorption of Dyes from Aqueous Solution. J. Saudi Chem. Soc. 2018, 22, 405–415. DOI: 10.1016/j.jscs.2017.08.005.
  • Kang, F.; Ge, Y.; Hu, X.; Goikavi, C.; Waigi, M. G.; Gao, Y.; Ling, W. Understanding the Sorption Mechanisms of Aflatoxin B1 to Kaolinite, Illite, and Smectite Clays via a Comparative Computational Study. J. Hazard. Mater. 2016, 320, 80–87. DOI: 10.1016/j.jhazmat.2016.08.006.
  • Khadem, A.; Sharifi, S. D.; Barati, M.; Borji, M. Evaluation of the Effectiveness of Yeast, Zeolite and Active Charcoal as Aflatoxin Absorbents in Broiler Diets. Glob. Vet. 2012, 4, 426–432.
  • Sahu, D.; Kannan, G. M.; Tailang, M.; Vijayaraghavan, R. In Vitro Cytotoxicity of Nanoparticles: A Comparison between Particle Size and Cell Type. J. Nanosci. 2016, 2016, 1–9. DOI: 10.1155/2016/4023852.
  • Murugadoss, S.; Lison, D.; Godderis, L.; Brule, S.; Van Den; Mast, J.; Brassinne, F.; Sebaihi, N.; Hoet, P. H. Toxicology of Silica Nanoparticles: An Update. Arch. Toxicol. 2017, 91, 2967–3010. DOI: 10.1007/s00204-017-1993-y.
  • Napierska, D.; Thomassen, L. C. J.; Lison, D.; Martens, J. A.; Hoet, P. H. The Nanosilica Hazard: Another Variable Entity. Part. Fibre Toxicol. 2010, 7, 39. DOI: 10.1186/1743-8977-7-39.
  • Amstad, P.; Levy, A.; Emerit, I.; Cerutti, P. Evidence for Membrane-Mediated Chromosomal Damage by Aflatoxin B1 in Human Lymphocytes. Carcinogenesis 1984, 5, 719–723. DOI: 10.1093/carcin/5.6.719.
  • Xu, R.; Karrow, N. A.; Shandilya, U. K.; Sun, L.; Kitazawa, H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins 2020, 12, 146. DOI: 10.3390/toxins12030146.
  • Zhang, J.; Zheng, N.; Liu, J.; Li, F. D.; Li, S. L.; Wang, J. Q. Aflatoxin B1 and Aflatoxin M1 Induced Cytotoxicity and DNA Damage in Differentiated and Undifferentiated Caco-2 Cells. Food Chem. Toxicol. 2015, 83, 54–60. DOI: 10.1016/j.fct.2015.05.020.
  • Golli-Bennour, E.; El; Kouidhi, B.; Bouslimi, A.; Abid-Essefi, S.; Hassen, W.; Bacha, H. Cytotoxicity and Genotoxicity Induced by Aflatoxin B1, Ochratoxin A, and Their Combination in Cultured Vero Cells. J. Biochem. Mol. Toxicol. 2010, 24, 42–50. DOI: 10.1002/jbt.20310.
  • Lin, Y.-S.; Haynes, C. L. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J. Am. Chem. Soc. 2010, 132, 4834–4842. DOI: 10.1021/ja910846q.
  • Martinez, D. ST.; Paula, A. J.; Fonseca, L. C.; Luna, L. V.; Silveira, C. P.; Durán, N.; Alves, O. L. Monitoring the Hemolytic Effect of Mesoporous Silica Nanoparticles after Human Blood Protein Corona Formation. Eur. J. Inorg. Chem. 2015, 2015, 4595–4602. DOI: 10.1002/ejic.201500573.
  • Lu, J.; Liong, M.; Li, Z.; Zink, J. I.; Tamanoi, F. Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals. Small 2010, 6, 1794–1805. DOI: 10.1002/smll.201000538.
  • Huang, X.; Li, L.; Liu, T.; Hao, N.; Liu, H.; Chen, D.; Tang, F. The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility In Vivo. ACS Nano 2011, 5, 5390–5399. DOI: 10.1021/nn200365a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.