Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 1
351
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Composition of proteins in fresh whey as waste in tofu processing

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Choi, S. I.; Kim, G. Y.; Jung, K. J.; Bae, H. J. Soybean Waste (Okara) as a Valorization Biomass for the Bioethanol Production. Energy 2015, 93, 1742–1747. DOI: 10.1016/j.energy.2015.09.093.
  • Belén, F.; Sánchez, J.; Hernández, E. J.; Auleda, M.; Raventós, M. One Option for the Management of Wastewater from Tofu Production: Freeze Concentration in a Falling-film System. J. Food Eng. 2012, 110, 364–373. DOI: 10.1016/j.jfoodeng.2011.12.036.
  • Stanojevic, P. S.; Barac, B. M.; Pesic, B. M.; Vucelic-Radovic, V. B. Assessment of Soy Genotype and Processing Method on Quality of Soybean Tofu. J. Agric. Food Chem. 2011, 59, 7368–7376.
  • Stanojevic, S. P.; Barac, M. B.; Pesic, M. B.; Vucelic-Radovic, B. V. Composition of Proteins in Okara as a Byproduct in Hydrothermal Processing of Soymilk. J. Agric. Food Chem. 2012, 60, 9221–9228. DOI: 10.1021/jf3004459.
  • Stanojevic, S.; Barac, M.; Pesic, M.; Jankovic, V.; Vucelic-Radovic, B. Bioactive Proteins and Energy Value of Okara as a Byproduct in Hydrothermal Processing of Soymilk. J. Agric. Food Chem. 2013, 6, 9210–9219.
  • Stanojevic, P. S.; Barac, B. M.; Pesic, B. M.; Zilic, M. S.; Kresovic, M. M.; Vucelic-Radovic, V. B. Mineral Elements, Lipoxygenase Activity and Antioxidant Capacity of Okara as a Byproduct in Hydrothermal Processing of Soy Milk. J. Agric. Food Chem. 2014, 62, 9017–9023.
  • Stanojevic, P. S.; Barać, B. M.; Kostić, ŽA.; Pešić,.; B.M. Trypsin Inhibitor Content and Activity of Soaking Water Whey as Waste in Soy Milk Processing. J. Environ. Sci. Heal. B 2021, 56, 1–5.
  • Matemu, A. O.; Kayahara, H.; Murasawa, H.; Nakamura, S. Importance of Size and Charge of Carbohydrate Chains in the Preparation of Functional Glycoproteins with Excellent Emulsifying Properties from Tofu Whey. Food Chem. 2009, 114, 1328–1334. DOI: 10.1016/j.foodchem.2008.11.011.
  • Jackson, C.-J. C.; Dini, J. P.; Lavandier, C.; Rupasinghe, H. P. V.; Faulkner, H.; Poysa, V.; Buzzell, D.; DeGrandis, S. Effects of Processing on the Content and Composition of Isoflavones during Manufacturing of Soy Beverage and Tofu. Process Biochem. 2002, 37, 1117–1123. DOI: 10.1016/S0032-9592(01)00323-5.
  • Matemu, A. O.; Katayama, S.; Kayahara, H.; Murasawa, H.; Nakamura, S. Improving Surface Functional Properties of Tofu Whey Derived Peptides by Chemical Modification with Fatty Acids. J. Food Sci. 2012, 77, C333–C339.
  • Thi, L. N.; Champagne, C. P.; Lee, B. H.; Goulet, J. Growth of Lactobacillus paracasei Ssp. paracasei on Tofu Whey. Int. J. Food Microbiol. 2003, 89, 67–75.
  • Ben, W. O.; Champagne, C. P.; Makhlouf, J.; Bazinet, L. Utilization of Tofu Whey Pre-treated by Electromembrane Process as a Growth Medium for Lactobacillus plantarum LB17. Desalination 2008, 229, 192–203.
  • Sobral, A. P.; Ossa, J. H.; Palazolo, G. G.; Wagner, R. J. Emulsifying Properties of Dried Soy-whey, Dried Tofu-whey, and Their Isolated Proteins. Pol. J. Food Nutr. Sci. 2018, 68, 347–358. DOI: 10.1515/pjfns-2018-0008.
  • Kao, F.-J.; Su, N.-W.; Lee, M.-H. Effect of Calcium Sulfate Concentration in Soymilk on the Microstructure of Firm Tofu and the Protein Constitutions in Tofu Whey. J. Agric. Food Chem. 2003, 57, 6211–6216.
  • Maruyama, N.; Sato, R.; Wada, Y.; Matsumura, Y.; Goto, H.; Okuda, E.; Nakagawa, S.; Utsumi, S. Structure-physicochemical Function Relationships of Soybean β-Conglycinin Constituent Subunits. J. Agric. Food Chem. 1999, 47, 5278–5284. DOI: 10.1021/jf990360+.
  • Pavlicevic, Z. M.; Tomic, D. M.; Djonlagic, A. J.; Stanojevic, P. S.; Vucelic-Radovic, V. B. Evaluation of Variation in Protein Composition on Solubility, Emulsifying and Gelling Properties of Soybean Genotypes Synthesizing β' Subunit. J. Am. Oil Chem. Soc. 2018, 95, 123–134. DOI: 10.1002/aocs.12002.
  • Lakemond, C. M. M.; de Jong, H. H. J.; Hessing, M.; Gruppen, H.; Voragen, A. G. J. Soy Glycinin: Influence of pH and Ionic Strength on Solubility and Molecular Structure at Ambient Temperatures. J. Agric. Food Chem. 2000, 48, 1985–1990. DOI: 10.1021/jf9908695.
  • Kwanyuen, P. P.; Pantalone, R. V.; Burton, W. J.; Wilson, F. R. A. New Approach to Genetic Alteration of Soybean Protein Composition and Quality. J. Am. Oil Chem. Soc. 1997, 74, 983–987. DOI: 10.1007/s11746-997-0015-2.
  • Pesic, M.; Vucelic-Radovic, B.; Barac, M.; Stanojevic, S. The Influence of Genotypic Variation in Protein Composition on Emulsifying Properties of Soy Proteins. J. Am. Oil Chem. Soc. 2005, 82, 667–672. DOI: 10.1007/s11746-005-1126-x.
  • Gonzalez de Mejia, E.; Bradford, T.; Hasler, C. The Anticarcinogenic Potential of Soybean Lectin and Lunasin. Nutr. Rev. 2003, 61, 239–246.
  • Barac, B. M.; Stanojevic, P. S.; Pesic, B. M. Biologically Active Components of Soybeans and Soy Protein products - A Review. APTEFF 2005, 36, 155–168.
  • Liener, I. E. Factor Affecting the Nutritional Quality of Soya Products. J. Am. Oil Chem. Soc. 1981, 49, 406–415.
  • Koide, T.; Ikenaka, T. Studies on Soybean Trypsin-inhibitors. 3. Amino Acid Sequence of the Carboxyl-terminal Region and the Complete Amino Acid Sequence of the Soybean Trypsin Inhibitor (Kunitz). Eur. J. Biochem. 1973, 32, 417–431.
  • Stanojević, P. S.; Vucelić-Radović, V. B.; Barać, B. M.; Pešić, B. M. The Effect of Autoclaving on Soluble Protein Composition and Trypsin Inhibitor Activity of Cracked Soybeans. APTEFF 2004, 35, 48–57.
  • Barać, M.; Stanojević, S. The Effect of Microwave Roasting on Soybean Protein Composition and Components with Trypsin Inhibitor Activity. Acta Aliment. Hung 2005, 34, 23–31. DOI: 10.1556/AAlim.34.2005.1.5.
  • Stanojević, P. S.; Barać, B. M.; Pešić, B. M.; Vucelić-Radović, V. B. The Influence of Soybean Genotypes and HTC Processing Method on Trypsin Inhibitor Activity of Soymilk. J. Agric. Sci. 2016, 61, 271–279.
  • Brinda, H. V.; Sai, K. V.; Vijaya, R. Inactivation Methods of Soybean Trypsin inhibitor - A Review. Trends Food Sci. Technol. 2017, 64, 115–125.
  • Singh, A.; Banerjee, R. Peptide Enriched Functional Food Adjunct from Soy Whey: A Statistical Optimization Study. Food Sci. Biotechnol. 2013, 22, 65–71. DOI: 10.1007/s10068-013-0050-8.
  • Zhihong, Q.; Xiao, D. C.; YongQiang, C.; Haijie, L.; YaQiong, L.; Lite, L. Microbiological and Chemical Changes during the Production of Acidic Whey, a Traditional Chinese Tofu-Coagulant. Int. J. Food Prop. 2010, 13, 90–104.
  • Smith, K. A.; Circle, J. S. Chemical Composition of the Seed. In Soybeans: Chemistry and Technology; Smith, A. K.; Circle, J. S., Eds.; AVI Pub. Co. INC: Westport, CN, 1972; Vol. I, pp 61–92.
  • Benedetti, S.; Prudencio, S. E.; Müller, C. M. O.; Verruck, S.; Mandarino, J. M. G.; Leite, R. S.; Petrus, J. C. C. Utilization of Tofu Whey Concentrate by Nanofiltration Process Aimed at Obtaining a Functional Fermented Lactic Beverage. J. Food Eng. 2016, 171, 222–229. DOI: 10.1016/j.jfoodeng.2015.10.034.
  • Wang, C.; Johnson, A. L.; Wilson, A. L. Calcium Coagulation Properties of Hydrothermally Processed Soymilk. J. Am. Oil Chem. Soc. 2003, 80, 1225–1229. DOI: 10.1007/s11746-003-0846-2.
  • Stanojevic, P. S.; Barać, B. M.; Pešić, B. M.; Vucelic-Radovic, V. B. Protein Composition and Textural Properties of Inulin-enriched Tofu Produced by Hydrothermal Process. LWT-Food Sci. Technol. 2020, 126, 109309. DOI: 10.1016/j.lwt.2020.109309.
  • Stanojević, P. S.; Barac, B. M.; Pesic, B. M.; Vucelić-Radović, V. B. Distribution of β-Amylase and Lipoxygenase in Soy Protein Products Obtained during Tofu Production. Hem. Ind. 2017, 71, 119–126. DOI: 10.2298/HEMIND150525021S.
  • Stanojevic, P. S.; Barać, B. M.; Pešić, B. M.; Vucelic-Radovic, V. B. Energy Value and Bioactive Proteins of Inulin-enriched Tofu Produced by Hydrothermal Process with Chymosin-pepsin Rennet. Int. J. Food Sci. Technol. 2021, 56, 5560–5568. DOI: 10.1111/ijfs.15132.
  • Fling, S. P.; Gregerson, D. S. Peptide and Protein Molecular Weight Determination by Electrophoresis Using a High-molarity Tris-buffer System without Urea. Anal. Biochem. 1986, 155, 83–88. DOI: 10.1016/0003-2697(86)90228-9.
  • Davis, J. Disc electrophoresis-II. Method and Application to Human Serum Proteins. Ann. N. Y. Acad. Sci. 1964, 121, 404–427. DOI: 10.1111/j.1749-6632.1964.tb14213.x.
  • Liu, F.; Markakis, P. An Improved Colorimetric Method for Determining Antitryptic Activity in Soybean Products. Cereal Chem. 1989, 66, 415–422.
  • Caskey, C. D.; Knapp, F. Method for Detecting Inadeqvately Heated Soybean Oil Meal. Ind. Eng. Chem. Anal. Ed. 1944, 16, 640–641. DOI: 10.1021/i560134a020.
  • AACC. Crude Protein-Micro Kjeldhal Method. In Approved Methods of the AACC, 10th ed.; American Association of Cereal Chemists. Approved Methods Committee: St. Paul, MN, 2000; Vol. II, AACC method, pp 46.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Riblett, A. L.; Herald, T. J.; Schmidt, K. A.; Tilley, K. A. Characterization of β-Conglycinin and Glycinin Soy Protein Fractions from Four Selected Soybean Genotypes. J. Agric. Food Chem. 2001, 49, 4983–4989. DOI: 10.1021/jf0105081.
  • Wagner, J. R.; Guéguen, J. Effect of Dissociation, Deamidation and Reducing Treatment on Structural and Surface Active Properties of Glycinin. J. Agric. Food Chem. 1995, 43, 1993–2000. DOI: 10.1021/jf00056a007.
  • Sato, W.; Kamata, Y.; Fukuda, M.; Yamauchi, F. Improved Isolation Method and Some Properties of Soybean γ-Congycinin. Phytochemistry 1984, 23, 1523–1526. DOI: 10.1016/S0031-9422(00)83431-7.
  • Komatsu, S.; Hirano, H. Plant Basic 7S Globulin-like Proteins Have Insulin and Insulin-like Growth Factor Binding Activity. FEBS Lett. 1991, 294, 21–212.
  • Sato, K.; Yamagishi, T.; Kamata, Y.; Yamauchi, F. Subunit Structure and Immunological Properties of a Basic 7S Globulin from Soybean Seeds. Phytochemistry 1987, 26, 903–908. DOI: 10.1016/S0031-9422(00)82314-6.
  • Yoshizawa, T.; Shimizu, T.; Yamabe, M.; Taichi, M.; Nishiuchi, Y.; Shichijo, N.; Unzai, S.; Hirano, H.; Sato, M.; Hashimoto, H. Crystal Structure of Basic 7S Globulin, a Xyloglucan-specific Endo-β-1,4-glucanase Inhibitor Protein-like Protein from Soybean Lacking Inhibitory Activity against Endo-β-glucanase. FEBS J. 2011, 278, 1944–1954. DOI: 10.1111/j.1742-4658.2011.08111.x.
  • Bazinet, L.; Ippersiel, D.; Lamarche, F. Recovery of Magnesium and Protein from Soy Tofu Whey by Electrodialytic Configurations. J. Chem. Technol. Biotechnol. 1999, 74, 663–668. DOI: 10.1002/(SICI)1097-4660(199907)74:7<663::AID-JCTB97>3.0.CO;2-I.
  • Friedman, M.; Brandon, L. D. Nutritional and Health Benefits of Soy Protein. J. Agric. Food Chem. 2001, 49, 1069–1086.
  • Chen, Y.; Xu, Z.; Zhang, C.; Kong, X.; Hua, Y. Heat-induced Inactivation Mechanisms of Kunitz Trypsin Inhibitor and Bowman-Birk Inhibitor in Soymilk Processing. Food Chem 2014, 154, 108–116. DOI: 10.1016/j.foodchem.2013.12.092.
  • Joel, I.; Guo-Nong, Z. Soybean Bioactive Components and Their Implications to health-A Review. Food Rev. Int. 2008, 24, 252–276.
  • Kennedy, A. R. The Bowman-Birk Inhibitor from Soybeans as an Anticarcinogen Agent. Am. J. Clin. Nutr. 1998, 68, 1406S–1412S. DOI: 10.1093/ajcn/68.6.1406S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.