Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 1
191
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects in air-exposed corn silage of medium chain fatty acids on select spoilage microbes, zoonotic pathogens, and in vitro rumen fermentation

, , , , , , , , , , , & show all

References

  • Pahlow, G.; Muck, R. E.; Driehuis, F.; Oude Elferink, S. J. W. H.; Spoelstra, S. F. Microbiology of Ensiling. In Silage Science and Technology (Agronomy Series No. 42); Buxton, D. R., Muck, R. E., Harrison, H. J., Eds. American Society of Agronomy: Madison, WI, 2003; pp 31–93.
  • Driehuis, F.; Oude Elferink, S. J. W. H.; Van Wikleaar, P. G. Lactobacillus buchneri Improves the Aerobic Stability of Laboratory and Farm Scale Whole Crop Maize but Does Not Affect Feed Intake and Milk Production of Dairy Cows. In Proceedings of 12th International Silage Conference, Uppsala, Sweden. Swedish University of Agricultural Sciences: Uppsala, 1999; pp 106–107.
  • Borreani, G.; Fernandes Bernardes, T.; Tabacco, E. Aerobic Deterioration Influences the Fermentative, Microbiological and Nutritional Quality of Maize and Sorghum Silages on Farm in High Quality Milk and Cheese Production Chains. R. Bras. Zootec. 2008, 37, 68–77. DOI: 10.1590/S1516-35982008001300009.
  • Queiroz, O. C. M.; Ogunade, I. M.; Weinberg, Z.; Adesogan, A. T. Silage Review: Foodborne Pathogens in Silage and Their Mitigation by Silage Additives. J. Dairy Sci. 2018, 101, 4132–4142. DOI: 10.3168/jds.2017-13901.
  • Kung, L. Jr.; Sheperd, A. C.; Smagala, A. M.; Endres, K. M.; Bessett, C. A.; Ranjit, N. K.; Glancey, J. L. The Effect of Preservatives Based on Propionic Acid on the Fermentation and Aerobic Stability of Corn Silage and a Total Mixed Ration. J. Dairy Sci. 1998, 81, 1322–1330. DOI: 10.3168/jds.S0022-0302(98)75695-4.
  • Borreani, G.; Tabacco, E.; Schmidt, R. J.; Holmes, B. J.; Muck, R. E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. DOI: 10.3168/jds.2017-13837.
  • Galbraith, H.; Miller, T. B.; Paton, A. M.; Thompson, J. K. Antibacterial Activity of Long Chain Fatty Acids and the Reversal with Calcium, Magnesium, Ergocalciferol and Cholesterol. J. Appl. Bacteriol. 1971, 34, 803–813. DOI: 10.1111/j.1365-2672.1971.tb01019.x.
  • Buňková, L.; Buňka, F.; Janiš, R.; Krejčí, J.; Doležálková, I.; Pospíšil, Z.; Růžička, J.; Tremlová, B. Comparison of Antibacterial Effect of Seven 1-Monoglycerides on Food-Borne Pathogens or Spoilage Bacteria. Acta Vet. Brno 2011, 80, 29–39. DOI: 10.2754/avb201180010029.
  • Nair, M. K. M.; Vasudevan, P.; Hoagland, T.; Venkitanarayanan, K. Inactivation of Escherichia coli O157: H7 and Listeria monocytogenes in Milk by Caprylic Acid and Monocaprylin. Food Microbiol. 2004, 21, 611–616. DOI: 10.1016/j.fm.2004.01.003.
  • Skrivanová, E.; Savka, O. G.; Marounek, M. In Vitro Effect of C2-C18 Fatty Acids on Salmonellas. Folia Microbiol. 2004, 49, 199–202. DOI: 10.1007/BF02931402.
  • de los Santos, F. S.; Donoghue, A. M.; Venkitanarayanan, K.; Dirain, M. L.; Reyes-Herrera, I.; Blore, P. J.; Donoghue, D. J. Caprylic Acid Supplemented in Feed Reduces Enteric Campylobacter jejuni Colonization in Ten-Day-Old Broiler Chickens. Poult. Sci. 2008, 87, 800–804. DOI: 10.3382/ps.2007-00280.
  • Skrivanová, E.; Molatová, Z.; Skrivanová, V.; Marounek, M. Inhibitory Activity of Rabbit Milk and Medium-Chain Fatty Acids against Enteropathogenic Escherichia coli O128. Vet. Microbiol. 2009, 135, 358–362. DOI: 10.1016/j.vetmic.2008.09.083.
  • Cenesiz, A. A.; Çiftci, I. Modulatory Effects of Medium Chain Fatty Acids in Poultry Nutrition and Health. Worlds Poult. Sci. J. 2020, 76, 234–248. DOI: 10.1080/00439339.2020.1739595.
  • McDonald, P.; Henderson, A. R. The Use of Fatty Acids as Grass Silage Additives. J. Sci. Food Agric. 1974, 25, 791–795. DOI: 10.1002/jsfa.2740250708.
  • Abel, H.; Immig, I.; Harman, E. Effect of Adding Caprylic and Capric Acid to Grass on Fermentation Characteristics during Ensiling and in the Artificial Rumen System RUSITEC. Anim. Feed Sci. Tech. 2002, 99, 65–72. DOI: 10.1016/S0377-8401(02)00084-6.
  • Ontiveros-Magadan, M.; Anderson, R. C.; Ruiz-Barrera, O.; Arzola-Alvarez, C.; Salinas-Chavira, J.; Hume, M. E.; Scholljegerdes, E. J.; Harvey, R. B.; Nisbet, D. J.; Castillo-Castillo, Y. Evaluation of Antimicrobial Compounds to Inhibit Growth of Select Gram-Positive Pathogenic or Antimicrobial Resistant Bacteria in Air-Exposed Silage. Can. J. Anim. Sci. 2022, 102, 75–84. DOI: 10.1139/cjas-2021-0061.
  • Božic, A.; Anderson, R. C.; Arzola-Alvarez, C.; Ruiz-Barrera, O.; Corral-Luna, A.; Castillo-Castillo, Y.; Arzola-Rubio, A.; Poole, T. L.; Harvey, R. B.; Hume, M. E.; et al. Inhibition of Multidrug-Resistant Staphylococci by Sodium Chlorate and Select Nitro- and Medium Chain Fatty Acid Compounds. J. Appl. Microbiol. 2019, 128, 1508–1516. DOI: 10.1111/jam.14232.
  • Leyendecker, S. A.; Callaway, T. R.; Anderson, R. C.; Nisbet, D. J. Technical Note on a Much Simplified Method for Collecting Ruminal Fluid Using a Nylon Paint Strainer. J. Sci. Food Agric. 2004, 84, 387–389. DOI: 10.1002/jsfa.1673.
  • Cagle, C. M.; Batista, L. F. D.; Anderson, R. C.; Fonseca, M. A.; Cravey, M. D.; Julien, C.; Tedeschi, L. O. Evaluation of Different Inclusion Levels of Dry Live Yeast Impacts on Various Rumen Parameters and In Situ Digestibilities of Dry Matter and Neutral Detergent Fiber in Growing and Finishing Beef Cattle. J. Anim. Sci. 2019, 97, 4987–4998. DOI: 10.1093/jas/skz342.
  • Allison, M. J.; Mayberry, W. R.; McSweeney, C. S.; Stahl, D. A. Synergistes jonesii, gen. nov., sp. nov.: A Rumen Bacterium That Degrades Toxic Pyridinediols. Syst. Appl. Microbiol. 1992, 15, 522–529. DOI: 10.1016/S0723-2020(11)80111-6.
  • Chaney, A. L.; Marbach, E. P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. DOI: 10.1093/clinchem/8.2.130.
  • Chalupa, W. Manipulating Rumen Fermentation. J. Anim. Sci. 1977, 46, 585–599. DOI: 10.2527/jas1977.453585x.
  • Woolford, M. K. Microbiological Screening of the Straight Chain Fatty Acids (Cl-C12) as Potential Silage Additives. J. Sci. Food Agric. 1975, 26, 219–228. DOI: 10.1002/jsfa.2740260213.
  • Razavi-Rohani, S. M.; Griffiths, M. W. The Effect of Mono and Polyglycerol Laurate on Spoilage and Pathogenic Bacteria Associated with Foods. J. Food Saf. 1994, 14, 131–151. DOI: 10.1111/j.1745-4565.1994.tb00590.x.
  • Kabara, J. J.; Swieczkowski, D. M.; Conley, A. J.; Truant, J. P. Fatty Acids and Derivatives as Antimicrobial Agents. Antimicrob. Agents Chemother. 1972, 2, 23–28. DOI: 10.1128/AAC.2.1.23.
  • Kelsey, J. A.; Bayles, K. W.; Shafii, B.; McGuire, M. A. Fatty Acids and Monoacylglycerols Inhibit Growth of Staphylococcus aureus. Lipids 2006, 41, 951–961. DOI: 10.1007/s11745-006-5048-z.
  • Laloučková, K.; Malá, L.; Slaničková, P.; Skřivanová, E. In Vitro Antimicrobial Effect of Palm Oils Rich in Medium-Chain Fatty Acids against Mastitis-Causing Gram-Positive Bacteria. Czech J. Anim. Sci. 2019, 64, 325–331. DOI: 10.17221/66/2019-CJAS.
  • Hovorková, P.; Laloučková, K.; Skřivanová, E. Determination of In Vitro Antibacterial Activity of Plant Oils Containing Medium-Chain Fatty Acids against Gram-Positive Pathogenic and Gut Commensal Bacteria. Czech J. Anim. Sci. 2018, 63, 119–125. DOI: 10.17221/70/2017-CJAS.
  • Woolford, M. K. A Review: The Detrimental Effects of Air on Silage. J. Appl. Bacteriol. 1990, 68, 101–116. DOI: 10.1111/j.1365-2672.1990.tb02554.x.
  • Driehuis, F.; Wilkinson, J. M.; Jiang, Y.; Ogunade, I.; Adesogan, A. T. Silage Review: Animal and Human Health Risks from Silage. J. Dairy Sci. 2018, 101, 4093–4110. DOI: 10.3168/jds.2017-13836.
  • Wang, L. L.; Johnson, E. A. Inhibition of Listeria monocytogenes by Fatty-Acids and Monoglycerides. Appl. Environ. Microbiol. 1992, 58, 624–629. DOI: 10.1128/AEM.58.2.624-629.1992.
  • Henderson, C. The Effects of Fatty Acids on Pure Cultures of Rumen Bacteria. J. Agric. Sci. 1973, 81, 107–112. DOI: 10.1017/S0021859600058378.
  • Zeit, J.; Bucher, S.; Zhou, X.; Meile, L.; Kreuzer, M.; Soliva, C. Inhibitory Effects of Saturated Fatty Acids on Methane Production by Methanogenic Archaea. J. Anim. Feed Sci. 2013, 22, 44–49. DOI: 10.22358/jafs/66015/2013.
  • Soliva, C. R.; Hindrichsen, I. K.; Meile, L.; Kreuzer, M.; Machmuller, A. Effects of Mixtures of Lauric and Myristic Acid on Rumen Methanogens and Methanogenesis In Vitro. Lett. Appl. Microbiol. 2003, 37, 35–39. DOI: 10.1046/j.1472-765X.2003.01343.x.
  • Soliva, C. R.; Meile, L.; Cieślak, A.; Kreuzer, M.; Machmüller, A. Rumen Simulation Technique Study on the Interactions of Dietary Lauric and Myristic Acid Supplementation in Suppressing Ruminal Methanogenesis. Br. J. Nutr. 2004, 92, 689–700. DOI: 10.1079/BJN20041250.
  • Hristov, A. N.; Pol, M. V.; Agle, M.; Zaman, S.; Schneider, C.; Ndegwa, P.; Vaddella, V. K.; Johnson, K.; Shingfield, K. J.; Karnati, S. K. R. Effect of Lauric Acid and Coconut Oil on Ruminal Fermentation, Digestion, Ammonia Losses from Manure, and Milk Fatty Acid Composition in Lactating Cows. J. Dairy Sci. 2009, 92, 5561–5582. DOI: 10.3168/jds.2009-2383.
  • Hristov, A. N.; Lee, C.; Cassidy, T.; Long, M.; Heyler, K.; Corl, B.; Forster, R. Effects of Lauric and Myristic Acids on Ruminal Fermentation, Production, and Milk Fatty Acid Composition in Lactating Dairy Cows. J. Dairy Sci. 2011, 94, 382–395. DOI: 10.3168/jds.2010-3508.
  • Yanza, Y. R.; Szumacher-Strabel, M.; Jayanegara, A.; Kasenta, A. M.; Gao, M.; Huang, H.; Patra, A. K.; Warzych, E.; Cieslak, A. The Effects of Dietary Medium-Chain Fatty Acids on Ruminal Methanogenesis and Fermentation In Vitro and In Vivo: A Meta-Analysis. J. Anim. Physiol. Anim. Nutr. 2020, 105, 1–16. DOI: 10.1111/jpn.13367.
  • Dohme, F.; Machmüller, A.; Wasserfallen, A.; Kreuzer, M. Ruminal Methanogenesis as Influenced by Individual Fatty Acids Supplemented to Complete Ruminant Diets. Lett. Appl. Microbiol. 2001, 32, 47–51. DOI: 10.1046/j.1472-765x.2001.00863.x.
  • Goel, G.; Arvidsson, K.; Vlaeminck, B.; Bruggeman, G.; Deschepper, K.; Fievez, V. Effects of Capric Acid on Rumen Methanogenesis and Biohydrogenation of Linoleic and α-Linolenic Acid. Animal 2009, 3, 810–816. DOI: 10.1017/S1751731109004352.
  • Marounek, M.; Skřivanová, V.; Savka, O. Effect of Caprylic, Capric and Oleic Acid on Growth of Rumen and Rabbit Caecal Bacteria. J. Anim. Feed Sci. 2002, 11, 507–516. DOI: 10.22358/jafs/67904/2002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.