Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 1
156
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of recycling hyper-thermal inoculum by repeated batch cultivation into co-composting of sludge and livestock-poultry manure

, , , , , & show all

References

  • Emmanuel, S. A.; Yoo, J.; Kim, E.-J.; Chang, J.-S.; Park, Y.-I.; Koh, S.-C. Development of Functional Composts Using Spent Coffee Grounds, Poultry Manure and Biochar through Microbial Bioaugmentation. J. Environ. Sci. Health B 2017, 52, 802–811. DOI: 10.1080/03601234.2017.1356165.
  • Chen, T.; Zhang, S.; Yuan, Z. Adoption of Solid Organic Waste Composting Products: A Critical Review. J. Cleaner Prod. 2020, 272, 122712. DOI: 10.1016/j.jclepro.2020.122712.
  • Xu, C.; Yang, J.; He, L.; Wei, W.; Lin, A. Carbon Capture and Storage as a Strategic Reserve against China’s CO2 Emissions. Environ. Dev. 2020, 37, 100608. DOI: 10.1016/j.envdev.2020.100608.
  • Shan, Y. N.; Chen, J. H.; Wang, L.; Li, F.; Fu, X. H.; Le, Y. Q. Influences of Adding Easily Degradable Organic Waste on the Minimization and Humification of Organic Matter during Straw Composting. J. Environ. Sci. Health B 2013, 48, 384–392. DOI: 10.1080/03601234.2013.742391.
  • Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T. Co-Composting of Spent Coffee Ground with Olive Mill Wastewater Sludge and Poultry Manure and Effect of Trametes Versicolor Inoculation on the Compost Maturity. Chemosphere 2012, 88, 677–682. DOI: 10.1016/j.chemosphere.2012.03.053.
  • Chen, C.-Y.; Kuo, J.-T.; Chung, Y.-C. Effect of Matured Compost as an Inoculating Agent on Odour Removal and Maturation of Vegetable and Fruit Waste Compost. Environ. Technol. 2013, 34, 313–320.
  • Yang, F.; Li, Y.; Han, Y.; Qian, W.; Li, G.; Luo, W. Performance of Mature Compost to Control Gaseous Emissions in Kitchen Waste Composting. Sci. Total Environ. 2019, 657, 262–269. DOI: 10.1016/j.scitotenv.2018.12.030.
  • Yu, Z.; Tang, J.; Liao, H.; Liu, X.; Zhou, P.; Chen, Z.; Rensing, C.; Zhou, S. The distinctive Microbial Community Improves Composting Efficiency in a Full-Scale Hyperthermophilic Composting Plant. Bioresour. Technol. 2018, 265, 146–154. DOI: 10.1016/j.biortech.2018.06.011.
  • Wang, H. B.; Han, L. R.; Feng, J. T.; Zhang, X. Evaluation of Microbially Enhanced Composting of Sophora Flavescens Residues. J. Environ. Sci. Health B 2016, 51, 63–70. DOI: 10.1080/03601234.2015.1080503.
  • Magrí, A.; Teira-Esmatges, M. R. Assessment of a Composting Process for the Treatment of Beef Cattle Manure. J. Environ. Sci. Health B 2015, 50, 430–438.
  • Nakasaki, K.; Hirai, H. Temperature control Strategy to Enhance the Activity of Yeast Inoculated into Compost Raw Material for Accelerated Composting. Waste Manag. 2017, 65, 29–36. DOI: 10.1016/j.wasman.2017.04.019.
  • Oshima, T.; Moriya, T. A preliminary Analysis of Microbial and Biochemical Properties of High-Temperature Compost. Ann. N. Y. Acad. Sci. 2008, 1125, 338–344. DOI: 10.1196/annals.1419.012.
  • Cui, P.; Liao, H.; Bai, Y.; Li, X.; Zhao, Q.; Chen, Z.; Yu, Z.; Yi, Z.; Zhou, S. Hyperthermophilic composting Reduces Nitrogen Loss via Inhibiting Ammonifiers and Enhancing Nitrogenous Humic Substance Formation. Sci. Total Environ. 2019, 692, 98–106. DOI: 10.1016/j.scitotenv.2019.07.239.
  • Liu, D.; Zeng, R.; Angelidaki, I. Enrichment and Adaptation of Extreme-Thermophilic (70 °C) Hydrogen Producing Bacteria to Organic Household Solid Waste by Repeated Batch Cultivation. Int. J. Hydrogen Energy 2008, 33, 6492–6497. DOI: 10.1016/j.ijhydene.2008.08.014.
  • Wei, H.; Wang, L.; Hassan, M.; Xie, B. Succession of the Functional Microbial Communities and the Metabolic Functions in Maize Straw Composting Process. Bioresour. Technol. 2018, 256, 333–341. DOI: 10.1016/j.biortech.2018.02.050.
  • Nunes, R. R.; Bontempi, R. M.; Mendonça, G.; Galetti, G.; Rezende, M. O. O. Vermicomposting as an Advanced Biological Treatment for Industrial Waste from the Leather Industry. J. Environ. Sci. Health B 2016, 51, 271–277. DOI: 10.1080/03601234.2015.1128737.
  • Maniadakis, K.; Lasaridi, K.; Manios, Y.; Kyriacou, M.; Manios, T. Integrated waste Management through Producers and Consumers Education: Composting of Vegetable Crop Residues for Reuse in Cultivation. J. Environ. Sci. Health B 2004, 39, 169–183. DOI: 10.1081/pfc-120027447.
  • Golbaz, S.; Zamanzadeh, M. Z.; Pasalari, H.; Farzadkia, M. Assessment of co-Composting of Sewage Sludge, Woodchips, and Sawdust: Feedstock Quality and Design and Compilation of Computational Model. Environ. Sci. Pollut. Res. 2020, 28,1–14.
  • Ma, L.; Rena, D.; Zhang, M.; Zhao, J. Phosphorus Fractions and Soil Release in Alternately Waterlogged and Drained Environments at the Water-Fluctuation-Zone of the Three Gorges Reservoir. J. Food Agric. Environ. 2010, 8, 1329–1335.
  • Jing, Y.; Chadwick, D.; Zhang, D.; Li, G.; Chen, S.; Luo, W.; Du, L.; He, S.; Peng, S. Effects of Aeration Rate on Maturity and Gaseous Emissions during Sewage Sludge Composting. Waste Manag. 2016, 56, 403–410. DOI: 10.1016/j.wasman.2016.07.017.
  • Medina, J.; Monreal, C.; Chabot, D.; Meier, S.; Gonzalez, M. E.; Morales, E.; Parillo, R.; Borie, F.; Cornejo, P. Microscopic and Spectroscopic Characterization of Humic Substances from a Compost Amended Copper Contaminated Soil: main Features and Their Potential Effects on Cu Immobilization. Environ. Sci. Pollut. Res. Int. 2017, 24, 14104–14116. DOI: 10.1007/s11356-017-8981-x.
  • Sharma, A.; Ganguly, R.; Gupta, A. K. Spectral Characterization and Quality Assessment of Organic Compost for Agricultural Purposes. Int. J. Recycl. Org. Waste Agric. 2018, 8, 197–213. DOI: 10.1007/s40093-018-0233-7.
  • Arai, M.; Uramoto, G.-I.; Asano, M.; Uematsu, K.; Uesugi, K.; Takeuchi, A.; Morono, Y.; Wagai, R. An Improved Method to Identify Osmium-Stained Organic Matter within Soil Aggregate Structure by Electron Microscopy and Synchrotron X-Ray Micro-Computed Tomography. Soil Tillage Res. 2019, 191, 275–281. DOI: 10.1016/j.still.2019.04.010.
  • Tashiro, Y.; Tabata, H.; Itahara, A.; Shimizu, N.; Tashiro, K.; Sakai, K. Unique Hyper-Thermal Composting Process in Kagoshima City Forms Distinct Bacterial Community Structures. J. Biosci. Bioeng. 2016, 122, 606–612. DOI: 10.1016/j.jbiosc.2016.04.006.
  • Luo, W. H.; Yuan, J.; Luo, Y. M.; Li, G. X.; Nghiem, L. D.; Price, W. E. Effects of Mixing and Covering with Mature Compost on Gaseous Emissions during Composting. Chemosphere 2014, 117, 14–19. DOI: 10.1016/j.chemosphere.2014.05.043.
  • Liu, L.; Wang, S.; Guo, X.; Zhao, T.; Zhang, B. Succession and Diversity of Microorganisms and Their Association with Physicochemical Properties during Green Waste Thermophilic Composting. Waste Manag. 2018, 73, 101–112. DOI: 10.1016/j.wasman.2017.12.026.
  • Stark, S.; M?Nnist?, M. K.; Ganzert, L.; Tiirola, M.; H?Ggblom, M. M. Grazing Intensity in Subarctic Tundra Affects the Temperature Adaptation of Soil Microbial Communities. Soil Biol. Biochem. 2015, 84, 147–157. DOI: 10.1016/j.soilbio.2015.02.023.
  • Zhang, W.; Yu, C.; Wang, X.; Hai, L. Increased Abundance of Nitrogen Transforming Bacteria by Higher C/N Ratio Reduces the Total Losses of N and C in Chicken Manure and Corn Stover Mix Composting. Bioresour. Technol. 2020, 297, 122410. DOI: 10.1016/j.biortech.2019.122410.
  • Wu, N.; Xie, S.; Zeng, M.; Xu, X.; Li, Y.; Liu, X.; Wang, X. Impacts of Pile Temperature on Antibiotic Resistance, Metal Resistance and Microbial Community during Swine Manure Composting. Sci. Total Environ. 2020, 744, 140920. DOI: 10.1016/j.scitotenv.2020.140920.
  • Wan, L.; Wang, X.; Cong, C.; Li, J.; Xu, Y.; Li, X.; Hou, F.; Wu, Y.; Wang, L. Effect of Inoculating Microorganisms in Chicken Manure Composting with Maize Straw. Bioresour. Technol. 2020, 301, 122730. DOI: 10.1016/j.biortech.2019.122730.
  • Ma, C.; Hu, B.; Wei, M. B.; Zhao, J. H.; Zhang, H. Z. Influence of Matured Compost Inoculation on Sewage Sludge Composting: Enzyme Activity, Bacterial and Fungal Community Succession. Bioresour. Technol. 2019, 294, 122165. DOI: 10.1016/j.biortech.2019.122165.
  • Zhang, S.; Xiao, R.; Liu, F.; Zhou, J.; Li, H.; Wu, J. Effect of Vegetation on Nitrogen Removal and Ammonia Volatilization from Wetland Microcosms. Ecol. Eng. 2016, 97, 363–369. DOI: 10.1016/j.ecoleng.2016.10.021.
  • Koyama, M.; Nagao, N.; Syukri, F.; Rahim, A. A.; Kamarudin, M. S.; Toda, T.; Mitsuhashi, T.; Nakasaki, K. Effect of Temperature on Thermophilic Composting of Aquaculture Sludge: NH3 Recovery, Nitrogen Mass Balance, and Microbial Community Dynamics. Bioresour. Technol. 2018, 265, 207–213. DOI: 10.1016/j.biortech.2018.05.109.
  • Zhao, C.; Jiang, E.; Chen, A. Volatile Production from Pyrolysis of Cellulose, Hemicellulose and Lignin. J. Inst. Energy 2017, 90, 902–913. DOI: 10.1016/j.joei.2016.08.004.
  • Liu, X.; Hou, Y.; Yu, Z.; Wang, Y.; Zhou, S.; Jiang, B.; Liao, Y. Comparison of Molecular Transformation of Dissolved Organic Matter in Vermicomposting and Thermophilic Composting by ESI-FT-ICR-MS. Environ. Sci. Pollut. Res. 2020, 27, 1–13.
  • Zeng, G. M.; Huang, H. L.; Huang, D. L.; Yuan, X. Z.; Jiang, R. Q.; Yu, M.; Yu, H. Y.; Zhang, J. C.; Wang, R. Y.; Liu, X. L. Effect of Inoculating White-Rot Fungus during Different Phases on the Compost Maturity of Agricultural Wastes. Process Biochem. 2009, 44, 396–400. DOI: 10.1016/j.procbio.2008.11.012.
  • Suthar, S.; Singh, D. Phytotoxicity of Composted Herbal Pharmaceutical Industry Wastes. Environ. Sci. Pollut. Res. Int. 2011, 19, 3054–3059. DOI: 10.1007/s11356-012-0985-y.
  • Wang, K.; Wu, Y.; Li, W.; Wu, C.; Chen, Z. Insight into Effects of Mature Compost Recycling on N2O Emission and Denitrification Genes in Sludge Composting. Bioresour. Technol. 2018, 251, 320–326. DOI: 10.1016/j.biortech.2017.12.077.
  • Bian, B.; Hu, X.; Zhang, S.; Lv, C.; Yang, Z.; Yang, W.; Zhang, L. Pilot-Scale Composting of Typical Multiple Agricultural Wastes: Parameter Optimization and Mechanisms. Bioresour. Technol. 2019, 287, 121482. DOI: 10.1016/j.biortech.2019.121482.
  • Xu, J.; Jiang, Z.; Li, M.; Li, Q. A Compost-Derived Thermophilic Microbial Consortium Enhances the Humification Process and Alters the Microbial Diversity During Composting. J. Environ. Manage. 2019, 243, 240–249. DOI: 10.1016/j.jenvman.2019.05.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.