Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 2
1,130
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Chlorpyrifos-induced dysregulation of synaptic plasticity in rat hippocampal neurons

, , , , , , & show all

References

  • Elizabeth, M. J.; Jisha, M. S. Chlorpyrifos: Pollution and Remediation. Environ. Chem. Lett. 2015, 13, 269–291. DOI: 10.1007/s10311-015-0513-7.
  • Huang, Y.; Zhang, W.; Pang, S.; Chen, J.; Bhatt, P.; Mishra, S.; Chen, S. Insights into the Microbial Degradation and Catalytic Mechanisms of Chlorpyrifos. Environ. Res. 2021, 194, 110660. DOI: 10.1016/j.envres.2020.110660.
  • Baez, M. E.; Espinoza, J.; Fuentes, E. Degradation Kinetics of Chlorpyrifos and Diazinon in Volcanic and Non-Volcanic Soils: Influence of Cyclodextrins. Environ. Sci. Pollut. Res. Int. 2018, 25, 25020–25035. DOI: 10.1007/s11356-018-2559-0.
  • Amin, M.; Raza Gurmani, A.; Rafique, M.; Ullah Khan, S.; Mehmood, A.; Muhammad, D.; Hussain Syed, J. Investigating the Degradation Behavior of Cypermethrin (CYP) and Chlorpyrifos (CPP) in Peach Orchard Soils Using Organic/Inorganic Amendments. Saudi J. Biol. Sci. 2021, 28, 5890–5896. DOI: 10.1016/j.sjbs.2021.06.035.
  • Farhan, M.; Ahmad, M.; Kanwal, A.; Butt, Z. A.; Khan, Q. F.; Raza, S. A.; Qayyum, H.; Wahid, A. Biodegradation of Chlorpyrifos Using Isolates from Contaminated Agricultural Soil, Its Kinetic Studies. Sci. Rep. 2021, 11, 10320. DOI: 10.1038/s41598-021-88264-x.
  • Hadibarata, T.; Kristanti, R. A.; Bilal, M.; Yilmaz, M.; Sathishkumar, P. Biodegradation mechanism of Chlorpyrifos by Halophilic Bacterium Hortaea sp. B15. Chemosphere 2023, 312, 137260. DOI: 10.1016/j.chemosphere.2022.137260.
  • Nandhini, A. R.; Harshiny, M.; Gummadi, S. N. Chlorpyrifos in Environment and Food: A Critical Review of Detection Methods and Degradation Pathways. Environ. Sci. Process Impact. 2021, 23, 1255–1277. DOI: 10.1039/d1em00178g.
  • Dar, M. A.; Kaushik, G.; Villarreal-Chiu, J. F. Pollution status and Bioremediation of Chlorpyrifos in Environmental Matrices by the Application of Bacterial Communities: A Review. J. Environ. Manage 2019, 239, 124–136. DOI: 10.1016/j.jenvman.2019.03.048.
  • Masiá, A.; Vásquez, K.; Campo, J.; Picó, Y. Assessment of Two Extraction Methods to Determine Pesticides in Soils, Sediments and Sludges. Application to the Turia River Basin. J. Chromatogr. A 2015, 1378, 19–31. DOI: 10.1016/j.chroma.2014.11.079.
  • Bhandari, G.; Atreya, K.; Scheepers, P. T. J.; Geissen, V. Concentration and Distribution of Pesticide Residues in Soil: Non-Dietary Human Health Risk Assessment. Chemosphere 2020, 253, 126594. DOI: 10.1016/j.chemosphere.2020.126594.
  • Sumon, K. A.; Rashid, H.; Peeters, E. T. H. M.; Bosma, R. H.; Van den Brink, P. J. Environmental Monitoring and Risk Assessment of Organophosphate Pesticides in Aquatic Ecosystems of North-West Bangladesh. Chemosphere 2018, 206, 92–100. DOI: 10.1016/j.chemosphere.2018.04.167.
  • Estellano, V. H.; Pozo, K.; Efstathiou, C.; Pozo, K.; Corsolini, S.; Focardi, S. Assessing Levels and Seasonal Variations of Current-Use Pesticides (CUPs) in the Tuscan Atmosphere, Italy, Using Polyurethane Foam Disks (PUF) Passive Air Samplers. Environ. Pollut. 2015, 205, 52–59. DOI: 10.1016/j.envpol.2015.05.002.
  • Arreguin-Rebolledo, U.; Páez-Osuna, F.; Betancourt-Lozano, M.; Rico-Martínez, R. Multi-and Transgenerational Synergistic Effects of Glyphosate and Chlorpyrifos at Environmentally Relevant Concentrations in the Estuarine Rotifer Proales Similis. Environ. Pollut. 2023, 318, 120708. DOI: 10.1016/j.envpol.2022.120708.
  • Minassa, V. S.; Aitken, A. V.; Hott, S. C.; de Sousa, G. J.; Batista, T. J.; Gonçalves, R. d C. R.; Coitinho, J. B.; Paton, J. F. R.; Beijamini, V.; Bissoli, N. S.; et al. Intermittent Exposure to Chlorpyrifos Results in Cardiac Hypertrophy and Oxidative Stress in Rats. Toxicology 2022, 482, 153357. DOI: 10.1016/j.tox.2022.153357.
  • Ju, H.; Yang, X.; Osman, R.; Geissen, V. Effects of Microplastics and Chlorpyrifos on Earthworms (Lumbricus Terrestris) and Their Biogenic Transport in Sandy Soil. Environ. Pollut. 2023, 316, 120483. DOI: 10.1016/j.envpol.2022.120483.
  • Zhang, J.; Zhao, L. L.; Hu, Z. P.; Zhou, J.; Deng, L.; Gu, F.;Dai, H. M.; Huang, M. Effects of Low-Dose Chlorpyrifos Exposure on Dopaminergic Neurons in the Midbrain Substantia Nigra and Neural Behavioral Development in Neonatal Rats. Zhongguo Dang Dai Er Ke Za Zhi 2011, 13, 989–994. URL: http://www.zgddek.com/EN/Y2011/V13/I12/989.
  • Wang, P.; Dai, H.; Zhang, C.; Tian, J.; Deng, Y.; Zhao, M.; Zhao, M.; Bing, G.; Zhao, L. Evaluation of the Effects of Chlorpyrifos Combined with Lipopolysaccharide Stress on Neuroinflammation and Spatial Memory in Neonatal Rats. Toxicology 2018, 410, 106–115. DOI: 10.1016/j.tox.2018.09.008.
  • Fortenberry, G. Z.; Meeker, J. D.; Sánchez, B. N.; Barr, D. B.; Panuwet, P.; Bellinger, D.; Schnaas, L.; Solano-González, M.; Ettinger, A. S.; Hernandez-Avila, M.; et al. Urinary 3,5,6-Trichloro-2-Pyridinol (TCPY) in Pregnant Women from Mexico City: Distribution, Temporal Variability, and Relationship with Child Attention and Hyperactivity. Int J Hyg Environ Health 2014, 217, 405–412. DOI: 10.1016/j.ijheh.2013.07.018.
  • Rauh, V.; Arunajadai, S.; Horton, M.; Perera, F.; Hoepner, L.; Barr, D. B.; Whyatt, R. Seven-Year Neurodevelopmental Scores and Prenatal Exposure to Chlorpyrifos, a Common Agricultural Pesticide. Environ. Health Perspect. 2011, 119, 1196–1201. DOI: 10.1289/ehp.1003160.
  • Sudhof, T. C. Towards an Understanding of Synapse Formation. Neuron 2018, 100, 276–293. DOI: 10.1016/j.neuron.2018.09.040.
  • Stampanoni, B. M.; Iezzi, E.; Gilio, L.; Centonze, D.; Buttari, F. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. Int. J. Mol. Sci. 2019, 20, 6193. DOI: 10.3390/ijms20246193.
  • Magee, J. C.; Grienberger, C. Synaptic Plasticity Forms and Functions. Annu. Rev. Neurosci. 2020, 43, 95–117. DOI: 10.1146/annurev-neuro-090919-022842.
  • Ismail, F. Y.; Fatemi, A.; Johnston, M. V. Cerebral Plasticity: Windows of Opportunity in the Developing Brain. Eur. J. Paediatr. Neurol. 2017, 21, 23–48. DOI: 10.1016/j.ejpn.2016.07.007.
  • Zwamborn, R. A. J.; Snijders, C.; An, N.; Thomson, A.; Rutten, B. P. F.; de Nijs, L. Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics. Prog. Mol. Biol. Transl. Sci. 2018, 158, 129–157. DOI: 10.1016/bs.pmbts.2018.04.005.
  • Kumar, M.; Camlin, N. J.; Holt, J. E.; Teixeira, J. M.; McLaughlin, E. A.; Tanwar, P. S. Germ cell Specific Overactivation of WNT/Betacatenin Signalling Has No Effect on Folliculogenesis but Causes Fertility Defects Due to Abnormal Foetal Development. Sci. Rep. 2016, 6, 27273. DOI: 10.1038/srep27273.
  • Inestrosa, N. C.; Varela-Nallar, L. Wnt signalling in Neuronal Differentiation and Development. Cell Tissue Res. 2015, 359, 215–223. DOI: 10.1007/s00441-014-1996-4.
  • Tian, J.; Dai, H.; Deng, Y.; Zhang, J.; Li, Y.; Zhou, J.; Zhao, M.; Zhao, M.; Zhang, C.; Zhang, Y.; et al. The effect of HMGB1 on Sub-Toxic Chlorpyrifos Exposure-Induced Neuroinflammation in Amygdala of Neonatal Rats. Toxicology 2015, 338, 95–103. DOI: 10.1016/j.tox.2015.10.010.
  • Zhang, J.; Dai, H.; Deng, Y.; Tian, J.; Zhang, C.; Hu, Z.; Bing, G.; Zhao, L. Neonatal chlorpyrifos Exposure Induces Loss of Dopaminergic Neurons in Young Adult Rats. Toxicology 2015, 336, 17–25. DOI: 10.1016/j.tox.2015.07.014.
  • Cardiff, R. D.; Miller, C. H.; Munn, R. J. Manual Hematoxylin and Eosin Staining of Mouse Tissue Sections. Cold Spring Harb. Protoc. 2014, 2014, 655–658. DOI: 10.1101/pdb.prot073411.
  • Feldman, A. T.; Wolfe, D. Tissue Processing and Hematoxylin and Eosin Staining. Methods Mol. Biol. 2014, 1180, 31–43. DOI: 10.1007/978-1-4939-1050-2_3.
  • Zhang, C.; Deng, Y.; Dai, H.; Zhou, W.; Tian, J.; Bing, G.; Zhao, L. Effects of Dimethyl Sulfoxide on the Morphology and Viability of Primary Cultured Neurons and Astrocytes. Brain Res. Bull. 2017, 128, 34–39. DOI: 10.1016/j.brainresbull.2016.11.004.
  • Chidambaram, S. B.; Rathipriya, A. G.; Bolla, S. R.; Bhat, A.; Ray, B.; Mahalakshmi, A. M.; Manivasagam, T.; Thenmozhi, A. J.; Essa, M. M.; Guillemin, G. J.; et al. Dendritic Spines: Revisiting the Physiological Role. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 92, 161–193. DOI: 10.1016/j.pnpbp.2019.01.005.
  • Amtul, Z; Atta-Ur-Rahman . Neural Plasticity and Memory: Molecular Mechanism. Rev. Neurosci. 2015, 26, 253–268. DOI: 10.1515/revneuro-2014-0075.
  • Han, K.; Kim, E. Synaptic Adhesion Molecules and PSD-95. Prog. Neurobiol. 2008, 84, 263–283. DOI: 10.1016/j.pneurobio.2007.10.011.
  • Matt, L.; Kim, K.; Chowdhury, D.; Hell, J. W. Role of Palmitoylation of Postsynaptic Proteins in Promoting Synaptic Plasticity. Front. Mol. Neurosci. 2019, 12, 8. DOI: 10.3389/fnmol.2019.00008.
  • Liu, Y.; Zhang, Y.; Zheng, X.; Fang, T.; Yang, X.; Luo, X.; Guo, A.; Newell, K. A.; Huang, X.-F.; Yu, Y. Galantamine improves Cognition, Hippocampal Inflammation, and Synaptic Plasticity Impairments Induced by Lipopolysaccharide in Mice. J. Neuroinflammation. 2018, 15, 112. DOI: 10.1186/s12974-018-1141-5.
  • Sorokina, A. M.; Saul, M.; Goncalves, T. M.; Gogola, J. V.; Majdak, P.; Rodriguez-Zas, S. L.; Rhodes, J. S. Striatal transcriptome of a Mouse Model of ADHD Reveals a Pattern of Synaptic Remodeling. PLoS One 2018, 13, e201553. DOI: 10.1371/journal.pone.0201553.
  • Coley, A. A.; Gao, W. J. PSD95: A Synaptic Protein Implicated in Schizophrenia or Autism? Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018, 82, 187–194. DOI: 10.1016/j.pnpbp.2017.11.016.
  • Paoletti, P.; Bellone, C.; Zhou, Q. NMDA Receptor Subunit Diversity: Impact on Receptor Properties, Synaptic Plasticity and Disease. Nat. Rev. Neurosci. 2013, 14, 383–400. DOI: 10.1038/nrn3504.
  • Miladinovic, T.; Nashed, M. G.; Singh, G. Overview of Glutamatergic Dysregulation in Central Pathologies. Biomolecules 2015, 5, 3112–3141. DOI: 10.3390/biom5043112.
  • Huganir, R. L.; Nicoll, R. A. AMPARs and Synaptic Plasticity: The Last 25 Years. Neuron 2013, 80, 704–717. DOI: 10.1016/j.neuron.2013.10.025.
  • Lau, C. G.; Zukin, R. S. NMDA receptor Trafficking in Synaptic Plasticity and Neuropsychiatric Disorders. Nat Rev Neurosci 2007, 8, 413–426. DOI: 10.1038/nrn2153.
  • Dorval, K. M.; Wigg, K. G.; Crosbie, J.; Tannock, R.; Kennedy, J. L.; Ickowicz, A.; Pathare, T.; Malone, M.; Schachar, R.; Barr, C. L. Association of the Glutamate Receptor Subunit Gene GRIN2B with Attention-Deficit/Hyperactivity Disorder. Genes Brain Behav. 2007, 6, 444–452. DOI: 10.1111/j.1601-183X.2006.00273.x.
  • Jensen, P. S. Review: Methylphenidate and Psychosocial Treatments Either Alone or in Combination Reduce ADHD Symptoms. Evid Based Ment. Health 2009, 12, 18. DOI: 10.1136/ebmh.12.1.18.
  • Duffney, L. J.; Zhong, P.; Wei, J.; Matas, E.; Cheng, J.; Qin, L.; Ma, K.; Dietz, D. M.; Kajiwara, Y.; Buxbaum, J. D.; Yan, Z. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Rep. 2015, 11, 1400–1413. DOI: 10.1016/j.celrep.2015.04.064.
  • Oliva, C. A.; Vargas, J. Y.; Inestrosa, N. C. Wnts in Adult Brain: From Synaptic Plasticity to Cognitive Deficiencies. Front. Cell Neurosci. 2013, 7, 224. DOI: 10.3389/fncel.2013.00224.
  • Narvaes, R. F.; Furini, C. Role of Wnt Signaling in Synaptic Plasticity and Memory. Neurobiol. Learn Mem. 2022, 187, 107558. DOI: 10.1016/j.nlm.2021.107558.
  • Ramos-Fernández, E.; Tapia-Rojas, C.; Ramírez, V. T.; Inestrosa, N. C. Wnt-7a Stimulates Dendritic Spine Morphogenesis and PSD-95 Expression through Canonical Signaling. Mol. Neurobiol. 2019, 56, 1870–1882. DOI: 10.1007/s12035-018-1162-1.
  • Lan, L.; Wang, W.; Huang, Y.; Bu, X.; Zhao, C. Roles of Wnt7a in Embryo Development, Tissue Homeostasis, and Human Diseases. J. Cell Biochem. 2019, 120, 18588–18598. DOI: 10.1002/jcb.29217.