Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 1
165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metabolism of guarana (Paullinia cupana Kunth var. sorbilis) plants and fruit production subjected to glyphosate doses

, , , , , & ORCID Icon show all

References

  • Bonadiman, B. D. S. R.; Cadoná, F. C.; Assmann, C. E.; Weis, G. C. C.; de Oliveira Alves, A.; Duarte, M. F.; Chaves, C. M.; do Carmo Chaves, C.; dos Santos Motta, K. M.; Ribeiro, E. E.; et al. Guarana (Paullinia Cupana): Cytoprotective Effects on Age-related Eye Dysfunction. J. Funct. Foods 2017, 36, 375–386. DOI: 10.1016/j.jff.2017.07.027.
  • Campos, M. P. O.; Riechelmann, R.; Martins, L. C.; Hassan, B. J.; Casa, F. B. A.; Giglio, A. D. Guaraná (Paullinia Cupana) Improves Fatigue in Breast Cancer Patients Undergoing Systemic Chemotherapy. J. Altern. Complement. Med. 2011, 17, 505–512.
  • Lima, N.; Numata, E.; Mesquita, L.; Dias, P.; Vilegas, W.; Gambero, A.; Ribeiro, M. Modulatory Effects of Guarana (Paullinia cupana) on Adipogenesis. Nutrients 2017, 9, 635. DOI: 10.3390/nu9060635.
  • Pereira, J. O.; Souza, A.; Souza, A.; França, S.; Oliveira, L. Overview on Biodiversity, Chemistry, and Biotechnological Potential of Microorganisms from the Brazilian Amazon. In Diversity and Benefits of Microorganisms from the Tropics; J. L. de Azevedo, Quecine, M. C., Eds., Springer International Publishing: Cham, Switzerland, 2017; pp 71–103.
  • Yonekura, L.; Martins, C. A.; Sampaio, G. R.; Monteiro, M. P.; César, L. A. M.; Mioto, B. M.; Mori, C. S.; Mendes, T. M. N.; Ribeiro, M. L.; Arçari, D. P.; et al. Bioavailability of Catechins from Guarana (Paullinia Cupana) and Its Effect on Antioxidant Enzymes and Other Oxidative Stress Markers in Healthy Human Subjects. Food Funct. 2016, 7, 2970–2978.
  • SEBRAE (Serviço Brasileiro de Apoio às Micro e Pequenas Empresas). O cultivo e o Mercado Do Guaraná, SEBRAE. https://www.sebrae.com.br/sites/PortalSebrae/artigos/o-cultivo-e-o-mercado-do-guarana,969a9e665b182410VgnVCM100000b272010aRCRD (Acessed at dez 2020), 2016.
  • Atroch, A. L.; Nascimento Filho, F. Guaraná Paullinia cupana Kunth Var. sorbilis (Mart.) Ducke. In Exotic Fruits. Rodrigues, S., Silva, E.O., Brito, E.S., Rodrigues, S., Silva, E.O., Brito, E.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp 225–236.
  • Gerhards, R.; Sanchez, D. A.; Hamouz, P.; Peteinatos, G. G.; Christensen, S.; Fernandez‐Quintanilla, C. Advances in Site‐Specific Weed Management in Agriculture—A Review. Weed Res. 2022, 62, 123–133. DOI: 10.1111/wre.12526.
  • Benbrook, C. M. Trends in Glyphosate Herbicide Use in the United States and Globally. Environ. Sci. Eur. 2016, 28, 3. DOI: 10.1186/s12302-016-0070-0.
  • Tong, M.; Gao, W.; Jiao, W.; Zhou, J.; Li, Y.; He, L.; Hou, R. Uptake, Translocation, Metabolism, and Distribution of Glyphosate in Nontarget Tea Plant (Camellia sinensis L.). J. Agric. Food Chem. 2017, 65, 7638–7646.
  • Freitas-Silva, L.; Araújo, H. H.; Meireles, C. S.; Silva, L. C. D. Plant exposure to Glyphosate-based Herbicides and How This Might Alter Plant Physiological and Structural Processes. Botany 2022, 99, 1–8.
  • Monquero, P. A.; Bevilaqua, N. D.; Silva, P. V. D.; Hirata, A. C. S.; Nocelli, R. C. F. Initial Growth of Tree Species under Herbicide Drift. Rev. Ciênc. Agrar. 2016, 59, 162–172.
  • Martinelli, R.; Rufino, L. R.; de Melo, A. C.; Alcántara-de la Cruz, R.; da Silva, M. F. d G. F.; da Silva, J. R.; Boaretto, R. M.; Monquero, P. A.; Mattos, D.; de Azevedo, F. A.; et al. Glyphosate Excessive Use Chronically Disrupts the Shikimate Pathway and Can Affect Photosynthesis and Yield in Citrus Trees. Chemosphere 2022, 308, 136468.
  • de Faria, G. S.; Carlos, L.; Jakelaitis, A.; Filho, S. C. V.; Lourenço, L. L.; da Costa, A. M.; Gonçalves, I. A. Tolerance of Hymenaea Courbaril L. to Glyphosate. Ecotoxicology 2022, 31, 168–177.
  • Zabalza, A.; Orcaray, L.; Fernández-Escalada, M.; Zulet-González, A.; Royuela, M. The pattern of Shikimate Pathway and Phenylpropanoids after Inhibition by Glyphosate or Quinate Feeding in Pea Roots. Pestic. Biochem. Physiol. 2017, 141, 96–102. DOI: 10.1016/j.pestbp.2016.12.005.
  • Tavares, A. M.; Atroch, A. L.; Nascimento Filho, F.; Pereira, J.; Araújo, J.; Moraes, L. A. C.; Santos, L. P.; Garcia, M. V B.; Arruda, M. R. de; Sousa, N. R.; Angelo, P. C. Cultura do Guaranazeiro no Amazonas. In Embrapa Amazônia Ocidental, Manaus, AM; Pereira, J. C. R., Ed.,.2005, 4.
  • Pfleeger, T.; Blakeley-Smith, M.; King, G.; Henry Lee, E.; Plocher, M.; Olszyk, D. The Effects of Glyphosate and Aminopyralid on a Multi-species Plant Field Trial. Ecotoxicology 2012, 21, 1771–1787. DOI: 10.1007/s10646-012-0912-5.
  • Albrecht, L. P.; Barbosa, A. P.; Silva, A. F. M.; Mendes, M. A.; Albrecht, A. J. P.; Avila, M. R. RR Soybean Seed Quality after Application of Glyphosate in Different Stages of Crop Development. Rev. Bras. Sementes 2012, 34, 373–381. DOI: 10.1590/S0101-31222012000300003.
  • Cooper, R.; Jeffers, D. Use of Nitrogen Stress to Demonstrate the Effect of Yield Limiting Factors on the Yield Response of Soybean to Narrow Row Systems 1. Agron. J. 1984, 76, 257–259. DOI: 10.2134/agronj1984.00021962007600020020x.
  • Araujo, G.; Albrecht, A. J. P.; Albrecht, L. P.; Pereira de Carvalho, H. W.; Migliavacca, R. A.; Silva, A. F. M. Effect of Glyphosate and Glufosinate on Nutritional Content and Agronomic Performance of Maize Possessing “cp4epsps and Pat” Transgenes. Aust. J. Crop Sci. 2021, 15, 773–779. S1.
  • Alvares, C. A.; Stape, J. L.; Sentelhas, P. C.; Moraes, G.; Leonardo, J.; Sparovek, G. Köppen’s climate Classification Map for Brazil. metz 2013, 22, 711–728. DOI: 10.1127/0941-2948/2013/0507.
  • França, A. C.; Freitas, M. A. M.; Fialho, C. M. T.; Silva, A. A.; Reis, M. R.; Galon, L.; Victoria Filho, R. Crescimento de Cultivares de Café Arábica Submetidos a Doses do Glyphosate. Planta Daninha 2010, 28, 599–607. DOI: 10.1590/S0100-83582010000300017.
  • Cakmak, I.; Horst, W. J. Effect of Aluminium on Lipid Peroxidation, Superoxide Dismutase, Catalase, and Peroxidase Activities in Root Tips of Soybean (Glycine max). Physiol. Plant 1991, 83, 463–468. DOI: 10.1111/j.1399-3054.1991.tb00121.x.
  • Heath, R. L.; Packer, L. Photoperoxidation in Isolated Chloroplasts: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. DOI: 10.1016/0003-9861(68)90654-1.
  • Martins, A. O.; Omena-Garcia, R. P.; Oliveira, F. S.; Silva, W. A.; Hajirezaei, M.-R.; Vallarino, J. G.; Ribeiro, D. M.; Fernie, A. R.; Nunes-Nesi, A.; Araújo, W. L.; et al. Differential root and Shoot Responses in the Metabolism of Tomato Plants Exhibiting Reduced Levels of Gibberellin. Environ. Exp. Bot. 2019, 157, 331–343. DOI: 10.1016/j.envexpbot.2018.10.036.
  • Fernie, A. R.; Roscher, A.; Ratcliffe, R. G.; Kruger, N. J. Fructose 2,6-Bisphosphate Activates Pyrophosphate: fructose-6-Phosphate 1-Phosphotransferase and Increases Triose Phosphate to Hexose Phosphate Cycling in Heterotrophic Cells. Planta 2001, 212, 250–263. DOI: 10.1007/s004250000386.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1006/abio.1976.9999.
  • Yemm, E.; Cocking, E.; Ricketts, R. The Determination of Amino-acids with Ninhydrin. Analyst 1955, 80, 209–214. DOI: 10.1039/an9558000209.
  • Puiatti, M.; Sodek, L. Waterlogging Affects Nitrogen Transport in the Xylem of Soybean. Plant Physiol. Biochem. 1999, 37, 767–773. DOI: 10.1016/S0981-9428(00)86690-5.
  • Jennings, A. C. The Determination of Dihydroxy Phenolic Compounds in Extracts of Plant Tissues. Anal. Biochem. 1981, 118, 396–398. DOI: 10.1016/0003-2697(81)90600-x.
  • Schimpl, F. C.; Kiyota, E.; Mayer, J. L. S.; Gonçalves, J. F. D.; Silva, J.; Mazzafera, P. Molecular and Biochemical Characterization of Caffeine Synthase and Purine Alkaloid Concentration in Guarana Fruit. Phytochemistry 2014, 105, 25–36.
  • Machado, K. N.; Freitas, A. A. D.; Cunha, L. H.; Faraco, A. A. G.; Pádua, R. M. D.; Braga, F. C.; Vianna-Soares, C. D.; Castilho, R. O. A Rapid Simultaneous Determination of Methylxanthines and Proanthocyanidins in Brazilian Guaraná (Paullinia cupana Kunth). Food Chem. 2018, 239, 180–188.
  • Shapiro, S. S.; Wilk, M. B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. DOI: 10.1093/biomet/52.3-4.591.
  • Levene, H. Contributions to Probability and Statistics. In Essays in Honor of Harold Hotelling. I. Olkin, Ed.; Stanford Univ. Press, Palo Alto, CA, 1960; pp 278–292.
  • Callegari-Jacques, S. Bioestatística–Princípios e Aplicações. Artmed: Porto Alegre, 2003; pp 255.
  • Markwell, J.; Osterman, J. C.; Mitchell, J. L. Calibration of the Minolta SPAD-502 Leaf Chlorophyll Meter. Photosynth. Res. 1995, 46, 467–472. DOI: 10.1007/BF00032301.
  • Gomes, M. P.; Le Manac’h, S. G.; Maccario, S.; Labrecque, M.; Lucotte, M.; Juneau, P. Differential effects of Glyphosate and Aminomethylphosphonic Acid (AMPA) on Photosynthesis and Chlorophyll Metabolism in Willow Plants. Pestic. Biochem. Physiol. 2016, 130, 65–70. DOI: 10.1016/j.pestbp.2015.11.010.
  • Silva, F. B.; Costa, A. C.; Alves, R. R. P.; Megguer, C. A. Chlorophyll Fluorescence as an Indicator of Cellular Damage by Glyphosate Herbicide in Raphanus sativus L. Plants. AJPS 2014, 05, 2509–2519. DOI: 10.4236/ajps.2014.516265.
  • Yanniccari, M.; Tambussi, E.; Istilart, C.; Castro, A. M. Glyphosate Effects on Gas Exchange and Chlorophyll Fluorescence Responses of Two Lolium perenne L. biotypes with Differential Herbicide Sensitivity. Plant Physiol. Biochem. 2012, 57, 210–217. DOI: 10.1016/j.plaphy.2012.05.027.
  • Zobiole, L. H. S.; Oliveira, R. S.; Kremer, R. J.; Constantin, J.; Yamada, T.; Castro, C.; Oliveira, F. A.; Oliveira, A. Effect of Glyphosate on Symbiotic N2 Fixation and Nickel Concentration in Glyphosate-resistant Soybeans. Appl. Soil Ecol. 2010, 44, 176–180. DOI: 10.1016/j.apsoil.2009.12.003.
  • Gomes, M. P.; Maccario, S.; Lucotte, M.; Labrecque, M.; Juneau, P. Consequences of Phosphate Application on Glyphosate Uptake by Roots: Impacts for Environmental Management Practices. Sci. Total. Environ. 2015, 537, 115–119. DOI: 10.1016/j.scitotenv.2015.07.054.
  • Gomes, M. P.; Juneau, P. Oxidative Stress in Duckweed (Lemna minor L.) Induced by Glyphosate: Is the Mitochondrial Electron Transport Chain a Target of This Herbicide? Environ. Pollut. 2016, 218, 402–409. DOI: 10.1016/j.envpol.2016.07.019.
  • Horton, P.; Ruban, A.; Walters, R. Regulation of Light Harvesting in Green Plants. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 1996, 47, 655–684. DOI: 10.1146/annurev.arplant.47.1.655.
  • Orcaray, L.; Zulet, A.; Zabalza, A.; Royuela, M. Impairment of Carbon Metabolism Induced by the Herbicide Glyphosate. J. Plant Physiol. 2012, 169, 27–33. DOI: 10.1016/j.jplph.2011.08.009.
  • Yanniccari, M.; Istilart, C.; Giménez, D. O.; Acciaresi, H. A.; Castro, A. M. Efecto del Glifosato Sobre el Crecimiento y Acumulación de Azúcares Libres en Dos Biotipos de Lolium perenne de Distinta Sensibilidad al Herbicida. Planta Daninha 2012, 30, 155-164.
  • Su, L. Y.; Dela Cruz, A.; Moore, P. H.; Maretzki, A. The Relationship of Glyphosate Treatment to Sugar Metabolism in Sugarcane: New Physiological Insights. J. Plant Physiol. 1992, 140, 168–173. DOI: 10.1016/S0176-1617(11)80929-6.
  • Graf, A.; Smith, A. M. Starch and the Clock: The Dark Side of Plant ProductivityR Trends Plant Sci. 2011, 16, 169–175. DOI: 10.1016/j.tplants.2010.12.003.
  • Zulet, A.; Gil-Monreal, M.; Villamor, J. G.; Zabalza, A.; van der Hoorn, R. A. L.; Royuela, M. Proteolytic Pathways Induced by Herbicides That Inhibit Amino Acid Biosynthesis. PLoS One 2013, 8, e73847. DOI: 10.1371/journal.pone.0073847.
  • Freitas-Silva, L.; Araújo, T. O.; Nunes-Nesi, A.; Ribeiro, C.; Costa, A. C.; Silva, L. C. Evaluation of Morphological and Metabolic Responses to Glyphosate Exposure in Two Neotropical Plant Species. Ecol. Indic. 2020, 113, 106246. DOI: 10.1016/j.ecolind.2020.106246.
  • Holländer, H.; Amrhein, N. The Site of the Inhibition of the Shikimate Pathway by Glyphosate. Plant Physiol. 1980, 66, 823–829. DOI: 10.1104/pp.66.5.823.
  • Amrhein, N.; Deus, B.; Gehrke, P.; Steinrücken, H. C. The Site of the Inhibition of the Shikimate Pathway by Glyphosate. Plant Physiol. 1980, 66, 830–834. DOI: 10.1104/pp.66.5.830.
  • Achnine, L.; Blancaflor, E. B.; Rasmussen, S.; Dixon, R. A. Colocalization of L-Phenylalanine Ammonia-Lyase and Cinnamate 4-Hydroxylase for Metabolic Channeling in Phenylpropanoid Biosynthesis. Plant Cell 2004, 16, 3098–3109. DOI: 10.1105/tpc.104.024406.
  • Jensen, R. A. Tyrosine and Phenylalanine Biosynthesis: Relationship between Alternative Pathways, Regulation and Subcellular Location. In The Shikimic Acid Pathway; Conn, E. E., Ed. Springer US: Boston, MA, 1986; pp 57–81.
  • Porter, L. J. Structure and Chemical Properties of the Condensed Tannins. In Plant Polyphenols; Hemingway, R.W., Laks, P. E. Eds.; Springer, Boston, MA, 1992; pp 245–258.
  • Mobin, M.; Wu, C.-H.; Tewari, R. K.; Paek, K.-Y. Studies on the Glyphosate-Induced Amino Acid Starvation and Addition of Precursors on Caffeic Acid Accumulation and Profiles in Adventitious Roots of Echinacea Purpurea (L.) Moench. Plant Cell Tiss. Organ. Cult. 2015, 120, 291–301. DOI: 10.1007/s11240-014-0606-1.
  • Li, Z.-X.; Yang, W.-J.; Ahammed, G. J.; Shen, C.; Yan, P.; Li, X.; Han, W.-Y. Developmental Changes in Carbon and Nitrogen Metabolism Affect Tea Quality in Different Leaf Position. Plant Physiol. Biochem. 2016, 106, 327–335.
  • Taiz, L.; Zeiger, E.; Moller, I. M.; Murphy, A. Fisiologia e desenvolvimento vegetal; Artmed Editora: Porto Alegre, 2017.
  • Ashihara, H.; Monteiro, A. M.; Gillies, F. M.; Crozier, A. Biosynthesis of Caffeine in Leaves of Coffee. Plant Physiol. 1996, 111, 747–753. DOI: 10.1104/pp.111.3.747.
  • Ashihara, H.; Sano, H.; Crozier, A. Caffeine and Related Purine Alkaloids: Biosynthesis, Catabolism, Function and Genetic Engineering. Phytochemistry 2008, 69, 841–856. DOI: 10.1016/j.phytochem.2007.10.029.
  • Atroch, A. L.; Nascimento Filho, F. J. D. Classificação do Coeficiente de Variação na Cultura do Guaranazeiro. Rev. Ciênc. Agrar. 2016, 43, 43–48.
  • Freitas-Silva, L.; Castro, N.; Silva, L. C. D. Morphoanatomical and Biochemical Changes in Zeyheria tuberculosa Exposed to Glyphosate Drift. Botany 2021, 99, 91–98. DOI: 10.1139/cjb-2020-0150.
  • Kruger, G. R.; Johnson, W. G.; Doohan, D. J.; Weller, S. C. Dose Response of Glyphosate and Dicamba on Tomato (Lycopersicon esculentum) Injury. Weed Technol. 2012, 26, 256–260. DOI: 10.1614/WT-D-11-00073.1.
  • Florencia, F. M.; Carolina, T.; Enzo, B.; leonardo, G. Effects of the Herbicide Glyphosate on Non-Target Plant Native Species from Chaco Forest (Argentina). Ecotoxicol. Environ. Saf. 2017, 144, 360–368. DOI: 10.1016/j.ecoenv.2017.06.049.
  • Gravena, R.; Victoria Filho, R.; Alves, P. L. C. A.; Mazzafera, P.; Gravena, A. R. Glyphosate Has Low Toxicity to Citrus Plants Growing in the Field. Can. J. Plant Sci 2012, 92, 119–127.
  • Soares, D. O. P.; Albertino, S. M. F.; Souza, F. C. P.; Santos, A. F.; silva, J. F. Period of Weed Interference in Guarana Crop. Planta Daninha 2019, 37, 1-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.