Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 2
135
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity

, , , , & ORCID Icon

References

  • Friedman, M. C. Biochemistry, and Safety of Acrylamide. J. Agric. Food Chem. 2003, 51, 4504–4526. DOI: 10.1021/jf030204+.
  • Kacar, S.; sahinturk, V. The Protective Agents Used against Acrylamide Toxicity: An in Vitro Cell Culture Study-Based Review. Cell J. 2021, 23, 367–381. DOI: 10.22074/cellj.2021.7286.
  • IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Int. Agency Res. Cancer IARC 1994, 60, 389–433. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Industrial-Chemicals-1994.
  • Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; törnqvist, M. Analysis of Acrylamide, a Carcinogen Formed in Heated Foodstuffs. J. Agric. Food Chem. 2002, 50, 4998–5006. DOI: 10.1021/jf020302f.
  • Rifai, L.; saleh, F. A. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int. J. Toxicol. 2020, 39, 93–102. DOI: 10.1177/1091581820902405.
  • Timmermann, C. A. G.; Mølck, S. S.; Kadawathagedara, M.; Bjerregaard, A. A.; Törnqvist, M.; Brantsaeter, A. L.; pedersen, M. A Review of Dietary Intake of Acrylamide in Humans. Toxics 2021, 9, 155. DOI: 10.3390/toxics9070155.
  • World Health Organization; Food and Agriculture Organization of the United Nations; Joint FAO/WHO Expert Committee on Food Additives. Meeting (72nd : 2010 : Rome, I. Evaluation of Certain Contaminants in Food: Seventy-Second [72nd] Report of the Joint FAO/WHO Expert Committee on Food Additives. 2011, 105. Accessed April 11, 2022. http://apps.who.int/iris/bitstream/handle/10665/44514/WHO_TRS_959_eng.pdf;jsessionid¼A091086B0648B45825D07E0F8711BF37?sequence¼1.
  • Koszucka, A.; Nowak, A.; Nowak, I.; motyl, I. Acrylamide in Human Diet, Its Metabolism, Toxicity, Inactivation and the Associated European Union Legal Regulations in Food Industry. Crit. Rev. Food Sci. Nutr. 2020, 60, 1677–1692. DOI: 10.1080/10408398.2019.1588222.
  • Shipp, A.; Lawrence, G.; Gentry, R.; McDonald, T.; Bartow, H.; Bounds, J.; Macdonald, N.; Clewell, H.; Allen, B.; Van landingham, C. Acrylamide: Review of Toxicity Data and Dose-Response Analyses for Cancer and Noncancer Effects. Crit. Rev. Toxicol. 2006, 36, 481–608. DOI: 10.1080/10408440600851377.
  • Lin, Z.; Zhang, Y.; Li, F.; Tan, X.; Luo, P.; liu, H. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a Saccharomyces Cerevisiae Model. Mar. Drugs 2020, 18, 395. DOI: 10.3390/md18080395.
  • Petka, K.; Tarko, T.; duda-chodak, A. Is Acrylamide as Harmful as We Think? A New Look at the Impact of Acrylamide on the Viability of Beneficial Intestinal Bacteria of the Genus Lactobacillus. Nutrients 2020, 12, 1157. DOI: 10.3390/nu12041157.
  • Thabet, N. M.; moustafa, E. M. Protective Effect of Rutin against Brain Injury Induced by Acrylamide or Gamma Radiation: Role of PI3K/AKT/GSK-3β/NRF-2 Signalling Pathway. Arch. Physiol. Biochem. 2018, 124, 185–193. DOI: 10.1080/13813455.2017.1374978.
  • Adewale, O. O.; Brimson, J. M.; Odunola, O. A.; Gbadegesin, M. A.; Owumi, S. E.; Isidoro, C.; tencomnao, T. The Potential for Plant Derivatives against Acrylamide Neurotoxicity. Phytother. Res. 2015, 29, 978–985. DOI: 10.1002/ptr.5353.
  • Kulling, S. E.; rawel, H. M. Chokeberry (Aronia Melanocarpa) - a Review on the Characteristic Components and Potential Health Effects. Planta Med. 2008, 74, 1625–1634. DOI: 10.1055/s-0028-1088306.
  • Jurikova, T.; Mlcek, J.; Skrovankova, S.; Sumczynski, D.; Sochor, J.; Hlavacova, I.; Snopek, L.; orsavova, J. Fruits of Black Chokeberry Aronia Melanocarpa in the Prevention of Chronic Diseases. Molecules 2017, 22, 944. DOI: 10.3390/molecules22060944.
  • Bolling, B. W.; Taheri, R.; Pei, R.; Kranz, S.; Yu, M.; Durocher, S. N.; brand, M. H. Harvest Date Affects Aronia Juice Polyphenols, Sugars, and Antioxidant Activity, but Not Anthocyanin Stability. Food Chem. 2015, 187, 189–196. DOI: 10.1016/j.foodchem.2015.04.106.
  • Jurendić, T.; ščetar, M. Aronia Melanocarpa Products and by-Products for Health and Nutrition: A Review. Antioxidants 2021, 10, 1052. DOI: 10.3390/antiox10071052.
  • Oszmiański, J.; lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia Melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. DOI: 10.3390/molecules21081098.
  • Hoffman, C. S.; Wood, V.; fantes, P. A. An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces Pombe Model System. Genetics 2015, 201, 403–423. DOI: 10.1534/genetics.115.181503.
  • Hayles, J.; nurse, P. Introduction to Fission Yeast as a Model System. Cold Spring Harb. Protoc 2018, 2018, 1–12, pdb.top079749. DOI: 10.1101/pdb.top079749.
  • Požgajová, M.; Navrátilová, A.; Šebová, E.; Kovár, M.; kačániová, M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int. J. Mol. Sci. 2020, 21, 7847. DOI: 10.3390/ijms21217847.
  • Gabriele, M.; Pucci, L.; Árvay, J.; longo, V. Anti-Inflammatory and Antioxidant Effect of Fermented Whole Wheat on TNFα-Stimulated HT-29 and NF-ΚB Signaling Pathway Activation. J. Funct. Foods 2018, 45, 392–400. DOI: 10.1016/j.jff.2018.04.029.
  • Cheung, L. M.; Cheung, P. C. K.; ooi, V. E. C. Antioxidant Activity and Total Phenolics of Edible Mushroom Extracts. Food Chem. 2003, 81, 249–255. DOI: 10.1016/S0308-8146(02)00419-3.
  • Bayliak, M. M.; Burdylyuk, N. I.; lushchak, V. I. Quercetin Increases Stress Resistance in the Yeast Saccharomyces Cerevisiae Not Only as an Antioxidant. Ann. Microbiol 2016, 66, 569–576. DOI: 10.1007/s13213-015-1136-8.
  • Beauchamp, C.; fridovich, I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal. Biochem. 1971, 44, 276–287. DOI: 10.1016/0003-2697(71)90370-8.
  • Navrátilová, A.; Kovár, M.; požgajová, M. Ascorbic Acid Mitigates Cadmium-Induced Stress, and Contributes to Ionome Stabilization in Fission Yeast. Environ. Sci. Pollut. Res 2021, 28, 15380–15393. DOI: 10.1007/s11356-020-11480-x.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. DOI: 10.1016/0003-2697(76)90527-3.
  • Ďurovcová, I.; Goffa, E.; Šestáková, Z.; Mániková, D.; Gaplovská-Kyselá, K.; Chovanec, M.; ševčovičová, A. Acute Exposure to Bisphenol a Causes Oxidative Stress Induction with Mitochondrial Origin in Saccharomyces Cerevisiae Cells. Journal of Fungi 2021, 7, 543. DOI: 10.3390/jof7070543.
  • Lin, Z.; Luo, P.; Huang, D.; Wu, Y.; Li, F.; liu, H. Multi-Omics Based Strategy for Toxicity Analysis of Acrylamide in Saccharomyces Cerevisiae Model. Chem. Biol. Interact. 2021, 349, 109682. DOI: 10.1016/j.cbi.2021.109682.
  • Kwolek-Mirek, M.; Zadrag-Tecza, R.; Bednarska, S.; bartosz, G. Yeast Saccharomyces Cerevisiae Devoid of Cu,Zn-Superoxide Dismutase as a Cellular Model to Study Acrylamide Toxicity. Toxicol. In Vitro 2011, 25, 573–579. DOI: 10.1016/j.tiv.2010.12.007.
  • Blank, H. M.; Callahan, M.; Pistikopoulos, I. P. E.; Polymenis, A. O.; polymenis, M. Scaling of G1 Duration with Population Doubling Time by a Cyclin in Saccharomyces Cerevisiae. Genetics 2018, 210, 895–906. DOI: 10.1534/genetics.118.301507.
  • Conconi, A.; Jager-Vottero, P.; Zhang, X.; Beard, B. C.; smerdon, M. J. Mitotic Viability and Metabolic Competence in UV-Irradiated Yeast Cells. Mutat. Res. 2000, 459, 55–64. DOI: 10.1016/S0921-8777(99)00057-9.
  • Kacar, S.; Vejselova, D.; Kutlu, H.; sahinturk, V. Acrylamide-Derived Cytotoxic, anti-Proliferative, and Apoptotic Effects on A549 Cells. Hum. Exp. Toxicol. 2018, 37, 468–474. DOI: 10.1177/0960327117712386.
  • Valcheva-Kuzmanova, S. V.; Beronova, A. B.; momekov, G. T. Protective Effect of Aronia Melanocarpa Fruit Juice in a Model of Cisplatin-Induced Cytotoxicity in Vitro. Folia Med (Plovdiv) 2013, 55, 76–79. DOI: 10.2478/folmed-2013-0031.
  • Kondeva-Burdina, M.; Valcheva-Kuzmanova, S.; Markova, T.; Mitcheva, M.; belcheva, A. Effects of Aronia Melanocarpa Fruit Juice on Isolated Rat Hepatocytes. Pharmacogn. Mag. 2015, 11, S592–S597. DOI: 10.4103/0973-1296.172967.
  • Vivancos, A. P.; Jara, M.; Zuin, A.; Sansó, M.; hidalgo, E. Oxidative Stress in Schizosaccharomyces Pombe: Different H2O2 Levels, Different Response Pathways. Mol. Genet. Genomics 2006, 276, 495–502. DOI: 10.1007/s00438-006-0175-z.
  • Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; zhang, Y. Characterization of Acrylamide-Induced Oxidative Stress and Cardiovascular Toxicity in Zebrafish Embryos. J. Hazard. Mater. 2018, 347, 451–460. DOI: 10.1016/j.jhazmat.2018.01.016.
  • Bo, N.; Yilin, H.; Chaoyue, Y.; Lu, L.; yuan, Y. Acrylamide Induces NLRP3 Inflammasome Activation via Oxidative Stress- and Endoplasmic Reticulum Stress-Mediated MAPK Pathway in HepG2 Cells. Food Chem. Toxicol. 2020, 145, 111679. DOI: 10.1016/j.fct.2020.111679.
  • Nowak, A.; Zakłos-Szyda, M.; Żyżelewicz, D.; Koszucka, A.; motyl, I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020, 25, E368. DOI: 10.3390/molecules25020368.
  • Karimi, M. Y.; Fatemi, I.; Kalantari, H.; Mombeini, M. A.; Mehrzadi, S.; goudarzi, M. Ellagic Acid Prevents Oxidative Stress, Inflammation, and Histopathological Alterations in Acrylamide-Induced Hepatotoxicity in Wistar Rats. J. Diet. Suppl. 2020, 17, 651–662. DOI: 10.1080/19390211.2019.1634175.
  • Hong, Z.; Minghua, W.; Bo, N.; Chaoyue, Y.; Haiyang, Y.; Haiqing, Y.; Chunyu, X.; Yan, Z.; yuan, Y. Rosmarinic Acid Attenuates Acrylamide Induced Apoptosis of BRL-3A Cells by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Food Chem. Toxicol. 2021, 151, 112156. DOI: 10.1016/j.fct.2021.112156.
  • Salimi, A.; Hashemidanesh, N.; Seydi, E.; Baghal, E.; Khodaparast, F.; ghobadi, H. Restoration and Stabilization of Acrylamide-Induced DNA, Mitochondrial Damages and Oxidative Stress by Chrysin in Human Lymphocyte. Expert Opin. Drug Metab. Toxicol. 2021, 17, 857–865. DOI: 10.1080/17425255.2021.1940951.
  • Pei, R.; Liu, J.; Martin, D. A.; Valdez, J. C.; Jeffery, J.; Barrett-Wilt, G. A.; Liu, Z.; bolling, B. W. Aronia Berry Supplementation Mitigates Inflammation in T Cell Transfer-Induced Colitis by Decreasing Oxidative Stress. Nutrients 2019, 11, E1316. DOI: 10.3390/nu11061316.
  • Owsianowski, E.; Walter, D.; fahrenkrog, B. Negative Regulation of Apoptosis in Yeast. Biochim. Biophys. Acta. 2008, 1783, 1303–1310. DOI: 10.1016/j.bbamcr.2008.03.006.
  • Kommuguri, U. N.; Satyaprasad Pallem, P. V.; Bodiga, S.; bodiga, V. L. Effect of Dietary Antioxidants on the Cytostatic Effect of Acrylamide during Copper-Deficiency in Saccharomyces Cerevisiae. Food Funct. 2014, 5, 705–715. DOI: 10.1039/c3fo60483g.
  • Chen, R.; Zhu, Q.; Fang, Z.; Huang, Z.; Sun, J.; Peng, M.; shi, P. Aluminum Induces Oxidative Damage in Saccharomyces Cerevisiae. Can. J. Microbiol. 2020, 66, 713–722. DOI: 10.1139/cjm-2020-0084.
  • Martins, D.; english, A. M. Catalase Activity is Stimulated by H2O2 in Rich Culture Medium and is Required for H2O2 Resistance and Adaptation in Yeast. Redox Biol. 2014, 2, 308–313. DOI: 10.1016/j.redox.2013.12.019.
  • Wang, J.; Fang, Z.; Gao, J.; Sun, L.; Wang, Y.; Liu, Y.; gooneratne, R. Comparative Study of Cytotoxicity, DNA Damage and Oxidative Stress Induced by Heavy Metals Cd(II), Hg(II) and Cr(III) in Yeast. Curr. Microbiol 2021, 78, 1856–1863. DOI: 10.1007/s00284-021-02454-4.
  • Spiegel, M.; Andruniów, T.; sroka, Z. Flavones’ and Flavonols’ Antiradical Structure–Activity Relationship—a Quantum Chemical Study. Antioxidants 2020, 9, 461. DOI: 10.3390/antiox9060461.
  • Bertelli, A.; Biagi, M.; Corsini, M.; Baini, G.; Cappellucci, G.; miraldi, E. Polyphenols: From Theory to Practice. Foods 2021, 10, 2595. DOI: 10.3390/foods10112595.
  • Oliveira, G.; Radovanovic, N.; Nunes, M. C. d N.; Fristedt, R.; Alminger, M.; andlid, T. Extracts of Digested Berries Increase the Survival of Saccharomyces Cerevisiae during H2O2 Induced Oxidative Stress. Molecules 2021, 26, 1057. DOI: 10.3390/molecules26041057.
  • Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M. C. B.; rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. DOI: 10.1155/2016/7432797.
  • Mendes, V.; Vilaça, R.; de Freitas, V.; Ferreira, P. M.; Mateus, N.; costa, V. Effect of Myricetin, Pyrogallol, and Phloroglucinol on Yeast Resistance to Oxidative Stress. Oxid. Med. Cell. Longev. 2015, 2015, 782504. DOI: 10.1155/2015/782504.
  • Lingua, M. S.; Neme Tauil, R. M.; Batthyány, C.; Wunderlin, D. A.; baroni, M. V. Proteomic Analysis of Saccharomyces Cerevisiae to Study the Effects of Red Wine Polyphenols on Oxidative Stress. J. Food Sci. Technol. 2019, 56, 4129–4138. DOI: 10.1007/s13197-019-03883-7.
  • Kovár, M.; Navrátilová, A.; Kolláthová, R.; Trakovická, A.; požgajová, M. Acrylamide-Derived Ionome, Metabolic, and Cell Cycle Alterations Are Alleviated by Ascorbic Acid in the Fission Yeast. Molecules 2022, 27, 4307. DOI: 10.3390/molecules27134307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.