Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 3
260
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Phytotoxicity of 2,4-D and fipronil mixtures to three green manure species

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Ogura, A.; Silva, P.; Castro, A. d.; Espíndola, G. B.; Silva, E. L. G.; Da, A. L. An Overview of the Sugarcane Expansion in the State of São Paulo (Brazil) Over the Last Two Decades and Its Environmental Impacts. Sustain. Prod. Consum. 2022, 32, 66–75. DOI: 10.1016/j.spc.2022.04.010.
  • Filoso, S.; Carmo, J. B.; do, S. F.; Mardegan, S.; Lins, R. M.; Gomes, T. F.; Martinelli, L. A. Reassessing the Environmental Impacts of Sugarcane Ethanol Production in Brazil to Help Meet Sustainability Goals. Renew. Sustain. Energy Rev. 2015, 52, 1847–1856.
  • IBAMA. Instituto Brasileiro do Meio Ambiente dos Recursos Naturais Renováveis Boletins 2009–2018 Vendas Ingredientes Ativos: Brasilia, 2019.
  • MAPA. Ministério da Agricultura, Pecuária e Abastecimento. AGROFIT. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. (accessed Jun 2022).
  • Silva, L. C. M.; Moreira, R. A.; Pinto, T. J. S.; Vanderlei, M. R.; Athayde, D. B.; Lopes, L. F. P.; Ogura, A. P.; Yoshii, M. P. C.; Freitas, J. S.; Montagner, C. C.; et al. Lethal and Sublethal Toxicity of Pesticides and Vinasse Used in Sugarcane Cultivation to Ceriodaphnia silvestrii (Crustacea: Cladocera). Aquat Toxicol 2021, 241, 106017. DOI: 10.1016/j.aquatox.2021.106017.
  • Pinto, T. d S.; Moreira, R. A.; Freitas, J. S.; Silva, L. d.; Yoshii, M. P. C.; Lopes, L. d P.; Ogura, A. P.; Gabriel, G. d M.; Rosa, L. M. T.; Schiesari, L.; et al. Responses of Chironomus sancticaroli to the Simulation of Environmental Contamination by Sugarcane Management Practices: Water and Sediment Toxicity. Sci. Total Environ. 2023, 857, Part 3,159643. DOI: 10.1016/j.scitotenv.2022.159643.
  • Freitas, J. S.; Pinto, T. D. S.; Yoshii, M. P. C.; Silva, L. D.; Lopes, L. D. P.; Ogura, A. P.; Girotto, L.; Montagner, C. C.; Alho, L. D. O.; Gebara, R. C.; et al. Realistic Exposure to Fipronil, 2,4-D, Vinasse and Their Mixtures Impair Larval Amphibian Physiology. Environ. Pollut. 2022, 299, 118894. DOI: 10.1016/j.envpol.2022.118894.
  • Song, Y. Insight into the Mode of Action of 2,4-Dichlorophenoxyacetic Acid (2,4-D) as an Herbicide. J. Integr. Plant Biol. 2014, 56, 106–113. DOI: 10.1111/jipb.12131.
  • Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; et al. PubChem in 2021: New Data Content and Improved Web Interfaces. Nucl. Acids Res. 2021, 49, D1388–D1395.
  • Boivin, A.; Amellal, S.; Schiavon, M.; Genuchten, M. V. 2,4-Dichlorophenoxyacetic Acid (2,4-D) Sorption and Degradation Dynamics in Three Agricultural Soils. Environ. Pollut. 2005, 138, 92–99. DOI: 10.1016/j.envpol.2005.02.016.
  • Merini, L. J.; Cuadrado, V.; Flocco, C. G.; Giulietti, A. M. Dissipation of 2,4-D in Soils of the Humid Pampa Region, Argentina: A Microcosm Study. Chemosphere 2007, 68, 259–265. DOI: 10.1016/j.chemosphere.2007.01.012.
  • Singh, N. S.; Sharma, R.; Singh, S. K.; Singh, D. K. A Comprehensive Review of Environmental Fate and Degradation of Fipronil and Its Toxic Metabolites. Environ. Res. 2021, 199, 111316. DOI: 10.1016/j.envres.2021.111316.
  • Gunasekara, A. S.; Truong, T.; Goh, K. S.; Spurlock, F.; Tjeerdema, R. S. Environmental Fate and Toxicology of Fipronil. J. Pestic. Sci. 2007, 32, 189–199. DOI: 10.1584/jpestics.R07-02.
  • Triques, M. C.; Oliveira, D.; Veloso Goulart, B.; Carolina Montagner, C.; Luiz Gaeta Espíndola, E.; Bezerra de Menezes-Oliveira, V. Assessing Single Effects of Sugarcane Pesticides Fipronil and 2,4-D on Plants and Soil Organisms. Ecotoxicol. Environ. Saf. 2021, 208, 111622. DOI: 10.1016/j.ecoenv.2020.111622.
  • Jonker, M. J.; Svendsen, C.; Bedaux, J. J. M.; Bongers, M.; Kammenga, J. E. Significance Testing of Synergistic/Antagonistic, Dose Level-Dependent, or Dose Ratio-Dependent Effects in Mixture Dose-Response Analysis. Environ. Toxicol. Chem. 2005, 24, 2701–2713. DOI: 10.1897/04-431r.1.
  • Moreira, R. A.; Rocha, G. S.; Silva, L. C. M.; Da; Goulart, B. V.; Montagner, C. C.; Melão, M. D. G.; Espindola, E. L. G. Exposure to Environmental Concentrations of Fipronil and 2,4-D Mixtures Causes Physiological, Morphological and Biochemical Changes in Raphidocelis Subcapitata. Ecotoxicol. Environ. Saf. 2020, 206, 111180. DOI: 10.1016/j.ecoenv.2020.111180.
  • Mendes, K. F.; Maset, B. A.; Mielke, K. C.; Sousa, R. D.; Martins, B. A. B.; Tornisielo, V. L. Phytoremediation of Quinclorac and Tebuthiuron-Polluted Soil by Green Manure Plants. Int. J. Phytoremediation 2020, 23, 1–8.
  • Pires, F. R.; Oliveira Procópio, S. D.; Barbosa, J.; Santos, D.; Marciano De Souza, C.; Dias, R. R. Avaliação da fitorremediação de tebuthiuron utilizando Crotalaria juncea como planta indicadora. Rev. Ciên. Agron. 2008, 39, 245–250.
  • Teófilo, T. d S.; Mendes, K. F.; Fernandes, B. C. C.; Oliveira, F. d.; Silva, T. S.; Takeshita, V.; Souza, M. d F.; Tornisielo, V. L.; Silva, D. V. Phytoextraction of Diuron, Hexazinone, and Sulfometuron-Methyl from the Soil by Green Manure Species. Chemosphere 2020, 256, 127059. DOI: 10.1016/j.chemosphere.2020.127059.
  • Florido, F. G.; Monquero, P. A.; Ribeiro Dias, A. C.; Tornisielo, V. The Absorption and Translocation of Imazaquin in Green Manures. Acta Sci. Agron. 2014, 36, 291. DOI: 10.4025/actasciagron.v36i3.17035.
  • Menezes-Oliveira, V. D.; Bianchi, M. D. O.; Espíndola, E. L. G. Hazard Assessment of the Pesticides KRAFT 36 EC and SCORE in a Tropical Natural Soil Using an Ecotoxicological Test Battery. Environ. Toxicol. Chem. 2018, 37, 2919–2924. DOI: 10.1002/etc.4056.
  • Pitombeira de Figueirêdo, L.; Athayde, D. B.; Daam, M. A.; Guerra, G.; Duarte-Neto, P. J.; Sarmento, H.; Espíndola, E. L. G. Integrated Ecosystem Models (Soil-Water) to Analyze Pesticide Toxicity to Aquatic Organisms at Two Different Temperature Conditions. Chemosphere 2021, 270, 129422. DOI: 10.1016/j.chemosphere.2020.129422.
  • International Organization and Standardization [ISO]. ISO 11269–2. Soil Quality - Determination of the Effects of Pollutants on Soil Flora - Part 2: Effects of Contaminated Soil on the Emergence and Early Growth of Higher Plants; ABNT: Rio de Janeiro, 2012.
  • Goulart, B. V.; Vizioli, B. D. C.; Espindola, E. L. G.; Montagner, C. C. Matrix Effect Challenges to Quantify 2,4-D and Fipronil in Aquatic Systems. Environ Monit Assess 2020, 192, 797. DOI: 10.1007/s10661-020-08776-3.
  • Langmuir, D. Aqueous Environmental Geochemistry. Prentice-Hall, Inc.: Upper Saddle River, New Jersey, 1997.
  • Bobé, A.; Coste, C. M.; Cooper, J. F. Factors Influencing the Adsorption of Fipronil on Soils. J. Agric. Food Chem. 1997, 45, 4861–4865. DOI: 10.1021/jf970362z.
  • Aajoud, A.; Raveton, M.; Aouadi, H.; Tissut, M.; Ravanel, P. Uptake and Xylem Transport of Fipronil in Sunflower. J. Agric. Food Chem. 2006, 54, 5055–5060. DOI: 10.1021/jf0604081.
  • Ramborger, B. P.; Ortis Gularte, C. A.; Rodrigues, D. T.; Gayer, M. C.; Sigal Carriço, M. R.; Bianchini, M. C.; Puntel, R. L.; Denardin, E. L. G.; Roehrs, R. The Phytoremediation Potential of Plectranthus neochilus on 2,4-Dichlorophenoxyacetic Acid and the Role of Antioxidant Capacity in Herbicide Tolerance. Chemosphere 2017, 188, 231–240. DOI: 10.1016/j.chemosphere.2017.08.164.
  • Ogura, A. P.; Moreira, R. A.; Silva, L. C. M.; Negro, G. S.; Freitas, J. S.; Pinto, T. J. S.; Lopes, L. D. P. D. P.; Yoshii, M. P. C.; Goulart, B. V.; Montagner, C. C.; Espíndola, E. L. G. Irrigation with Water Contaminated by Sugarcane Pesticides and Vinasse Can Inhibit Seed Germination and Crops Initial Growth. Arch. Environ. Contam. Toxicol. 2022, 1, 12. DOI: 10.1007/s00244-022-00914-x.
  • Cenkci, S.; Yildiz, M.; Ciğerci, I. H.; Bozdağ, A.; Terzi, H.; Terzi, E. S. A. Evaluation of 2,4-D and Dicamba Genotoxicity in Bean Seedlings Using Comet and RAPD Assays. Ecotoxicol. Environ. Saf. 2010, 73, 1558–1564. DOI: 10.1016/j.ecoenv.2010.07.033.
  • Taylor, S. G.; Shilling, D. G.; Quesenberry, K. H.; Chaudhry, G. R. Phytotoxicity of 2,4-D and 2,4-Dichlorophenol to Red Clover (Trifolium pratense). Weed Sci. 1989, 37, 825–829. DOI: 10.1017/S004317450007291X.
  • Triques, M. C.; Ribeiro, F.; de Oliveira, D.; Goulart, B. V.; Montagner, C. C.; Espíndola, E. L. G.; Menezes-Oliveira, V. D. The Ecotoxicity of Sugarcane Pesticides to Non-Target Soil Organisms as a Function of Soil Properties and Moisture Conditions. Int. J. Environ. Res. 2022, 16, 1–17.
  • Voltolini, G. B.; Castanheira, T.; Silva, L. C.; Da; Alecrim, A. D. O.; Rezende, T. T.; Barbosa, J.; Guimarães, R. J. Phytotoxicity and Growth of Coffee Plants as a Function of the Application of Herbicide 2,4-D. Coffee Sci. 2019, 14, 438–445. DOI: 10.25186/cs.v14i4.1605.
  • Costa, R.; Neto, A.; Luis, A.; Berghetti, P.; Tarouco, C. P.; Holkem, A. S.; Nicoloso, F. T.; Araujo, M. M.; Da, A.; Ulguim, R. Phytotoxicity and Physiological Changes in Schinus Terebinthifolius Raddi Under Simulated 2,4-D Drift and Dicamba. Rev. Ceres. 2022, 69, 314–322. DOI: 10.1590/0034-737x202269030009.
  • Costa, D. d S.; Silva, C. C. A.; Da; Direito, I. C. N.; Victório, C. P. In Vitro Development of Green Manures: Phytotoxicity and Remediation of 2,4-D/Desenvolvimento In vitro de adubos verdes: Fitotoxicidade e remediação de 2,4-D. Braz. J. Dev. 2022, 8, 40551–40568. DOI: 10.34117/bjdv8n5-507.
  • Grossmann, K. Auxin Herbicides: Current Status of Mechanism and Mode of Action. Pest Manag Sci 2010, 66, 113–120. DOI: 10.1002/ps.1860.
  • Özkul, M.; Özel, Ç. A.; Yüzbaşıoğlu, D.; Ünal, F. Does 2,4-Dichlorophenoxyacetic Acid (2,4-D) Induce Genotoxic Effects in Tissue Cultured Allium Roots? Cytotechnology 2016, 68, 2395–2405. DOI: 10.1007/s10616-016-9956-3.
  • Ateeq, B.; Abul Farah, M.; Niamat Ali, M.; Ahmad, W. Clastogenicity of Pentachlorophenol, 2,4-D and Butachlor Evaluated by Allium Root Tip Test. Mutat Res. 2002, 514, 105–113. DOI: 10.1016/s1383-5718(01)00327-8.
  • Karaismailoglu, M. C. Assessments on the Potential Genotoxic Effects of Fipronil Insecticide on Allium cepa Somatic Cells. Caryologia 2017, 70, 378–384. DOI: 10.1080/00087114.2017.1371992.
  • Rodrigues, A. F.; Latawiec, A. E.; Reid, B. J.; Solórzano, A.; Schuler, A. E.; Lacerda, C.; Fidalgo, E. C. C.; Scarano, F. R.; Tubenchlak, F.; Pena, I.; et al. Systematic Review of Soil Ecosystem Services in Tropical Regions. R. Soc. Open Sci. 2021, 8, rsos.201584.
  • Nalewaja, J. D.; Matysiak, R. 2,4-D and Salt Combinations Affect Glyphosate Phytotoxicity. Weed Technol. 1992, 6, 322–327. DOI: 10.1017/S0890037X00034801.
  • Pacheco, L. P.; Petter, F. A.; Câmara, A. C. F.; Lima, D. B. C.; Procópio, S. O.; Barroso, A. L. L.; Cargnelutti Filho, A.; Silva, I. S. Tolerância do milheto (Pennisetum americanum) ao 2,4-D. Planta Daninha 2007, 25, 173–179. DOI: 10.1590/S0100-83582007000100019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.