Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 5
125
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted synthesis of copper oxide particles and its application for determination of imazapyr in environmental samples

, & ORCID Icon

References

  • Mateo-Sagasta, J.; Marjani, S.; Turral, H.; Burke, J. Water Pollution from Agriculture: A Global Review. Executive Summary; Food and Agriculture Organization of the United Nations (FAO): Rome, 2017.
  • Carriquiriborde, P. Evaluación de Riesgo Ecológico de Plaguicidas en Ecosistemas Acuáticos Pampeanos: Impactos Estimados Sobre la Comunidad de Peces. In Plaguicidas en el Ambiente, 1st ed.; Aparicio, V.; Gonzalo Mayoral, E.; Costa, J. L., Eds. INTA Editions: Buenos Aires, Argentina, 2017; pp 11–32.
  • Hu, M.; Liu, K.; Qiu, J.; Zhang, H.; Li, X.; Zeng, D.; Tan, H. Behavior of Imidazolinone Herbicide Enantiomers in Earthworm-Soil Microcosms: Degradation and Bioaccumulation. Sci. Total Environ. 2020, 707, 135476. DOI: 10.1016/j.scitotenv.2019.135476.
  • Gianelli, V. R.; Bedmar, F.; Costa, J. L. Persistence and Sorption of Imazapyr in Three Argentinean Soils. Environ. Toxicol. Chem. 2014, 33, 29–34. DOI: 10.1002/etc.2400.
  • Martins, G. L.; Friggi, C. A.; Prestes, O. D.; Vicari, M. C.; Friggi, D. A.; Adaime, M. B.; Zanella, R. Simultaneous LC-MS/MS Determination of Imidazolinone Herbicides Together with Other Multiclass Pesticide Residues in Soil. Clean Soil Air Water. 2014, 42, 1441–1449. DOI: 10.1002/clen.201300140.
  • Yavari, S.; Sapari, N.; Malakahmad, B.; Razali, A.; Bin, M. A.; Gervais, T. S.; Yavari, S. Adsorption–Desorption Behavior of Polar Imidazolinone Herbicides in Tropical Paddy Fields Soils. Bull. Environ. Contam. Toxicol. 2020, 104, 121–127. DOI: 10.1007/s00128-019-02759-y.
  • Hu, M.; Liu, L.; Hou, N.; Li, X.; Zeng, D.; Tan, H. Insight into the Adsorption Mechanisms of Ionizable Imidazolinone Herbicides in Sediments: Kinetics, Adsorption Model, and Influencing Factors. Chemosphere. 2021, 274, 129655. DOI: 10.1016/j.chemosphere.2021.129655.
  • Kemmerich, M.; Bernardi, G.; Adaime, M. B.; Zanella, R.; Prestes, O. D. A Simple and Efficient Method for Imidazolinone Herbicides Determination in Soil by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr A 2015, 1412, 82–89. DOI: 10.1016/j.chroma.2015.08.005.
  • Dugdale, T. M.; Butler, K. L.; Finlay, M. J.; Liu, Z.; Rees, D. B.; Clements, D. Residues and Dissipation of the Herbicide Imazapyr after Operational Use in Irrigation Water. Int. J. Environ. Res. Public Health. 2020, 17, 2421. DOI: 10.3390/ijerph17072421.
  • Kumar, S.; Sachdeva, S.; Chaudhary, S.; Chaudhary, G. R. Assessing the Potential Application of Bio-Compatibly Tuned Nanosensor of Yb2O3 for Selective Detection of Imazapyr in Real Samples. Colloids Surf. A Physicochem. Eng. Asp. 2020, 593, 124612. DOI: 10.1016/j.colsurfa.2020.124612.
  • León, L.; Mozo-Mulero, C.; Martín-Infante, F. J.; Maraver, J. J.; Carbajo, J.; Mozo, J. D. Inexpensive FIA Method to Determine Trace Levels of Imazapyr by UV-Detection Enhanced with Electrochemical Polarization. Arab. J. Chem. 2019, 12, 1042–1049. DOI: 10.1016/j.arabjc.2018.09.009.
  • Teixeira Tarley, C. R.; Cajamarca Suquila, F. A.; Casarin, J.; Gonçalves Junior, A. C.; Segatelli, M. G. Development of Selective Preconcentration/Clean-Up Method for Imidazolinone Herbicides Determination in Natural Water and Rice Samples by HPLC-PAD Using an Imazethapyr Imprinted Poly(vinylimidazole-TRIM). Food Chem. 2021, 334, 127345. DOI: 10.1016/j.foodchem.2020.127345.
  • Jadhav, M. R.; Pudale, A.; Raut, P.; Utture, S.; Ahammed Shabeer, T. P.; Banerjee, K. A Unified Approach for High-Throughput Quantitative Analysis of the Residues of Multi-Class Veterinary Drugs and Pesticides in Bovine Milk Using LC-MS/MS and GC–MS/MS. Food Chem. 2019, 272, 292–305. DOI: 10.1016/j.foodchem.2018.08.033.
  • Ozcan, C.; Cebi, U. K.; Gurbuz, M. A.; Ozer, S. Residue Analysis and Determination of IMI Herbicides in Sunflower and Soil by GC–MS. Chromatographia. 2017, 80, 941–950. DOI: 10.1007/s10337-017-3307-1.
  • Fischer, J. B.; Michael, J. L. Use of ELISA Immunoassay Kits as a Complement to HPLC Analysis of Imazapyr and Triclopyr in Water Samples from Forest Watersheds. Bull. Environ. Contam. Toxicol. 1997, 59, 611–618. DOI: 10.1007/s001289900523.
  • Daniel, D.; do Lago, C. L. Determination of Multiclass Pesticides Residues in Corn by QuEChERS and Capillary Electrophoresis Tandem Mass Spectrometry. Food Anal. Methods. 2019, 12, 1684–1692. DOI: 10.1007/s12161-019-01501-y.
  • Yankson, A. A.; Kuditcher, A.; Gebreyesus, G.; Egblewogbe, M. N. Y. H.; Amuzu, J. K. A.; Armah, E. A. A Low Cost Synthesis and Characterization of CuO Nanoparticles for Photovoltaic Applications. Ghana J. Sci. 2019, 60, 17–23. DOI: 10.4314/gjs.v60i1.2.
  • Li, Y.; Wang, Z.; Sun, L.; Liu, L.; Xu, C.; Kuang, H. Nanoparticle-Based Sensors for Food Contaminants. TrAC Trends Anal. Chem. 2019, 113, 74–83. DOI: 10.1016/j.trac.2019.01.012.
  • Wang, M.; Ni, Y.; Liu, A. Fe3O4@Resorcinol-Formaldehyde Resin/Cu2O Composite Microstructures: Solution-Phase Construction, Magnetic Performance, and Applications in Antibacterial and Catalytic Fields. ACS Omega. 2017, 2, 1505–1512. DOI: 10.1021/acsomega.7b00064.
  • Woźniak-Budych, M. J.; Przysiecka, Ł.; Maciejewska, B. M.; Wieczorek, D.; Staszak, K.; Jarek, M.; Jesionowski, T.; Jurga, S. Facile Synthesis of Sulfobetaine-Stabilized Cu2O Nanoparticles and Their Biomedical Potential. ACS Biomater. Sci. Eng. 2017, 3, 3183–3194. DOI: 10.1021/acsbiomaterials.7b00465.
  • Liu, L.; Yang, W.; Li, Q.; Gao, S.; Shang, J. K. Synthesis of Cu2O Nanospheres Decorated with TiO2 Nanoislands, Their Enhanced Photoactivity and Stability under Visible Light Illumination, and Their Post-Illumination Catalytic Memory. ACS Appl. Mater. Interfaces. 2014, 6, 5629–5639. DOI: 10.1021/am500131b.
  • Aguilar, M. S.; Rosas, G. A New Synthesis of Cu2O Spherical Particles for the Degradation of Methylene Blue Dye. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100195. DOI: 10.1016/j.enmm.2018.100195.
  • Guzman, M.; Arcos, M.; Dille, J.; Rousse, C.; Godet, S.; Malet, L. Effect of the Concentration and the Type of Dispersant on the Synthesis of Copper Oxide Nanoparticles and Their Potential Antimicrobial Applications. ACS Omega. 2021, 6, 18576–18590. DOI: 10.1021/acsomega.1c00818.
  • Kong, J.; Zhang, S.; Shen, M.; Zhang, J.; Yoganathan, S. Evaluation of Copper(I)-Doped Zinc Oxide Composite Nanoparticles on Both Gram-Negative and Gram-Positive Bacteria. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128742. DOI: 10.1016/j.colsurfa.2022.128742.
  • Aguilera, Á. Y.; Krepper, G.; Di Nezio, M. S. Simple One-Step Synthesis of Bismuth Nanoparticles for Voltammetric Sensing of Metal Ions. J. Clust. Sci. 2022, 33, 1417–1426. DOI: 10.1007/s10876-021-02068-7.
  • Singh, J.; Kumar, V.; Kim, K. H.; Rawat, M. Biogenic Synthesis of Copper Oxide Nanoparticles Using Plant Extract and Its Prodigious Potential for Photocatalytic Degradation of Dyes. Environ. Res. 2019, 177, 108569. DOI: 10.1016/j.envres.2019.108569.
  • Shubhashree, K. R.; Reddy, R.; Gangula, A. K.; Nagananda, G. S.; Badiya, P. K.; Ramamurthy, S. S.; Aramwit, P.; Reddy, N. Green Synthesis of Copper Nanoparticles Using Aqueous Extracts from Hyptis suaveolens (L.). Mater. Chem. Phys. 2022, 280, 125795. DOI: 10.1016/j.matchemphys.2022.125795.
  • Okpara, E. C.; Ogunjinmi, O. E.; Oyewo, O. A.; Fayemi, O. E.; Onwudiwe, D. C. Green Synthesis of Copper Oxide Nanoparticles Using Extracts of Solanum Macrocarpon Fruit and Their Redox Responses on SPAu Electrode. Heliyon. 2021, 7, e08571. DOI: 10.1016/j.heliyon.2021.e08571.
  • Lamberti, F.; Mazzariol, C.; Spolaore, F.; Ceccato, R.; Salmaso, L.; Gross, S. Design of Experiment: A Rational and Still Unexplored Approach to Inorganic Materials’ Synthesis. Sustain. Chem. 2022, 3, 114–130. DOI: 10.3390/suschem3010009.
  • Usman, A. I.; Aziz, A. A.; Sodipo, B. K. Application of Central Composite Design for Optimization of Biosynthesized Gold Nanoparticles via Sonochemical Method. SN Appl. Sci. 2019, 1, 403. DOI: 10.1007/s42452-019-0429-0.
  • Nikaeen, G.; Yousefinejad, S.; Rahmdel, S.; Samari, F.; Mahdavinia, S. Central Composite Design for Optimizing the Biosynthesis of Silver Nanoparticles Using Plantago Major Extract and Investigating Antibacterial, Antifungal and Antioxidant Activity. Sci. Rep. 2020, 10, 9642. DOI: 10.1038/s41598-020-66357-3.
  • Soto-Barajas, M.; Prado, B.; Raymundo, E.; Hidalgo, C.; Etchevers, J. Nuevo Método Para Extraer Imazapyr Del Suelo Sin el Uso de Solventes Orgánicos. Rev. Int. Contam. Ambient. 2011, 27, 323–332.
  • Kaur, P.; Kaur, P.; Kaur, K. Adsorptive Removal of Imazethapyr and Imazamox from Aqueous Solution Using Modified Rice Husk. J. Clean. Prod. 2020, 244, 118699. DOI: 10.1016/j.jclepro.2019.118699.
  • Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. DOI: 10.1039/C5DT02964C.
  • Zhang, H.; Ren, X.; Cui, Z. Shape-Controlled Synthesis of Cu2O Nanocrystals Assisted by PVP and Application as Catalyst for Synthesis of Carbon Nanofibers. J. Cryst. Growth. 2007, 304, 206–210. DOI: 10.1016/j.jcrysgro.2007.01.043.
  • Rajamohan, R.; Ashokkumar, S.; Lee, Y. R. Environmental Free Synthesis of Biologically Active Cu2O Nanoparticles for the Cytotoxicity. J. Mol. Struct. 2023, 1271, 134081. DOI: 10.1016/j.molstruc.2022.134081.
  • Amos-Tautua, B. M.; Fakayode, O. J.; Songca, S. P.; Oluwafemi, O. S. Evolution of Gluconic Acid Capped Paramagnetic Iron Oxide Nanoparticles. Nano-Struct. Nano-Objects. 2019, 20, 100389. DOI: 10.1016/j.nanoso.2019.100389.
  • Granata, G.; Onoguchi, A.; Tokoro, C. Preparation of Copper Nanoparticles for Metal-Metal Bonding by Aqueous Reduction with D-Glucose and PVP. Chem. Eng. Sci. 2019, 209, 115210. DOI: 10.1016/j.ces.2019.115210.
  • Muñiz-Valencia, R.; Leyva-Morales, J. B.; Jurado Jurado, J. M.; Sarabia-Garcia, O. R.; Hernández Madrigal, J. V.; Ceballos-Magaña, S. G.; Bejarano Ramirez, I. C. Determinación de Plaguicidas en Suelo Agrícola Mediante Extracción en Fase Sólida y Cromatografía de Líquidos de Alta Eficiencia (HPLC) Acoplada a un Detector de Arreglo de Diodos (DAD). Acta Univ. 2019, 29, 1–14. DOI: 10.15174/au.2019.2287.
  • Bougarrani, S.; Baicha, Z.; Latrach, L.; Mahi, M.; El; Fernandez, F. J. H. Improving the Imazapyr Degradation by Photocatalytic Ozonation: A Comparative Study with Different Oxidative Chemical Processes. Processes. 2020, 8, 1446. DOI: 10.3390/pr8111446.
  • Allegrini, F.; Olivieri, A. C. 2.20 - Figures of Merit. In Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, 2nd ed.; Brown, S.; Tauler, R.; Walczak , B., Eds. Elsevier: Oxford, 2020; pp 441–463
  • Colazzo, M.; Pareja, L.; Cesio, M. V.; Heinzen, H. Multi-Residue Method for Trace Pesticide Analysis in Soils by LC-QQQ-MS/MS and Its Application to Real Samples. Int. J. Environ. Anal. Chem. 2018, 98, 1292–1308. DOI: 10.1080/03067319.2018.1551530.
  • Shaifuddin, S. N. M.; Hussain, H.; Hassan, H. F. Optimization of Extraction and Detection Method for Imazapyr and Imazapic Residues in Water, Soil and Fish Tissue Samples Using High Performance Liquid Chromatography. J. Teknol. 2016, 78, 43–48. DOI: 10.11113/jt.v78.9082.
  • Albrecht, A. J. P.; Albrecht, L. P.; Silva, A. F. M.; Ramos, R. A.; Zeny, E. P.; Lorenzetti, J. B.; Danilussi, M. T. Y.; Barroso, A. A. M. Efficacy of Imazapic/Imazapyr and Other Herbicides in Mixtures for the Control of Digitaria insularis Prior to Soybean Sowing. Agron. Colomb. 2020, 38, 350–356. DOI: 10.15446/agron.colomb.v38n3.83046.
  • Yu, P.; Li, X.; Zhang, X.; Zhou, H.; Xu, Y.; Sun, Y.; Zheng, H. Insights into the Glyphosate Removal Efficiency by Using Magnetic Powder Activated Carbon Composite. Sep. Purif. Technol 2021, 254, 117662. DOI: 10.1016/j.seppur.2020.117662.
  • United States Environmental Protection Agency (US-EPA). Memorandum:Ecological Risk Assessment Supporting the Reregistration Eligibility Decision for the Use of the Herbicide, Imazapyr, in Previously Registered Non-Agricultural and Horticultural Settings, and on Clearfield Corn, 2005. https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-128821_30-Sep-05_a.pdf (accessed May 5, 2023).
  • Carena, L.; Vione, D. Modelling the Photochemistry of Imazethapyr in Rice Paddy Water. Sci. Total Environ. 2018, 644, 1391–1398. DOI: 10.1016/j.scitotenv.2018.06.324.
  • El-Gawad, H. A. Validation Method of Organochlorine Pesticides Residues in Water Using Gas Chromatography–Quadruple Mass. Water Sci. 2016, 30, 96–107. DOI: 10.1016/j.wsj.2016.10.001.
  • Kannan, K.; Radhika, D.; Vijayalakshmi, S.; Sadasivuni, K. K.; A. Ojiaku, A.; Verma, U. Facile Fabrication of CuO Nanoparticles via Microwave-Assisted Method: Photocatalytic, Antimicrobial and Anticancer Enhancing Performance. Int. J. Environ. Anal. Chem. 2022, 102, 1095–1108. DOI: 10.1080/03067319.2020.1733543.
  • Bekru, A. G.; Zelekew, O. A.; Andoshe, D. M.; Sabir, F. K.; Eswaramoorthy, R. Microwave-Assisted Synthesis of CuO Nanoparticles Using Cordia Africana Lam. Leaf Extract for 4-Nitrophenol Reduction. J. Nanotechnol. 2021, 2021, 5581621. DOI: 10.1155/2021/5581621.
  • Veiga, L.; Garate, O.; Lloret, P.; Moina, C.; Ybarra, G. One-Pot Ultrafast Microwave-Assisted Synthesis of Copper and Copper Oxide Nanoparticles. Int. J. Nanosci. 2019, 18, 1850034. DOI: 10.1142/S0219581X18500345.
  • Kumar, S. V.; Bafana, A. P.; Pawar, P.; Faltane, M.; Rahman, A.; Dahoumane, S. A.; Kucknoor, A.; Jeffryes, C. S. Optimized Production of Antibacterial Copper Oxide Nanoparticles in a Microwave-Assisted Synthesis Reaction Using Response Surface Methodology. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 170–178. DOI: 10.1016/j.colsurfa.2019.04.063.
  • Rajamohan, R.; Lee, Y. R. Microwave-Assisted Synthesis of Copper Oxide Nanoparticles by Apple Peel Extract and Efficient Catalytic Reduction on Methylene Blue and Crystal Violet. J. Mol. Struct. 2023, 1276, 134803. DOI: 10.1016/j.molstruc.2022.134803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.