Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 58, 2023 - Issue 5
189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extraction method for determining dinotefuran insecticide in water samples

, , & ORCID Icon

References

  • Moraes, R. F. de. Agrotóxicos no Brasil: padrões de uso, política da regulação e prevenção da captura regulatória. Ipea, 2019, 76. http://www.ipea.gov.br/portal/publicacoes (accessed May 10, 2022).
  • IBAMA. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil. http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (accessed Oct 25, 2022).
  • Liu, T.; Wang, X.; Xu, J.; You, X.; Chen, D.; Wang, F.; Li, Y. Biochemical and Genetic Toxicity of Dinotefuran on Earthworms (Eisenia fetida). Chemosphere 2017, 176, 156–164. DOI: 10.1016/j.chemosphere.2017.02.113.
  • Chen, X.; Liu, X.; Dong, B.; Hu, J. Simultaneous Determination of Pyridaben, Dinotefuran, DN and UF in Eggplant Ecosystem under Open-Field Conditions: Dissipation Behaviour and Residue Distribution. Chemosphere 2018, 195, 245–251. DOI: 10.1016/j.chemosphere.2017.12.011.
  • Wang, Y.; Han, Y.; Xie, Y.; Xu, P.; Li, W. The Metabolism Distribution and Effect of Dinotefuran in Chinese Lizards (Eremias argus). Chemosphere 2018, 211, 591–599. DOI: 10.1016/j.chemosphere.2018.07.181.
  • Yang, Y.; Wei, Q.; Zou, T.; Kong, Y.; Su, L.; Ma, D.; Wang, Y. Dual-Emission Ratiometric Fluorescent Detection of Dinotefuran Based on Sulfur-Doped Carbon Quantum Dots and Copper Nanocluster Hybrid. Sensors Actuators B Chem. 2020, 321, 128534. DOI: 10.1016/j.snb.2020.128534.
  • Yu, B.; Chen, Z.; Lu, X.; Huang, Y.; Zhou, Y.; Zhang, Q.; Wang, D.; Li, J. Effects on Soil Microbial Community after Exposure to Neonicotinoid Insecticides Thiamethoxam and Dinotefuran. Sci. Total Environ. 2020, 725, 138328. DOI: 10.1016/j.scitotenv.2020.138328.
  • Watanabe, E.; Baba, K.; Miyake, S. Analytical Evaluation of Enzyme-Linked Immunosorbent Assay for Neonicotinoid Dinotefuran for Potential Application to Quick and Simple Screening Method in Rice Samples. Talanta 2011, 84, 1107–1111. DOI: 10.1016/j.talanta.2011.03.019.
  • Yu, Z.; Schmidt, O.; Zhao, Y.; Liu, M.; Kumar, A.; Luo, Y.; Xu, J. Dinotefuran Alters Collembola-Fungi-Bacteria Interactions That Control Mineralization of Maize and Soil Organic Carbon. J. Hazard. Mater. 2021, 418, 126391. DOI: 10.1016/j.jhazmat.2021.126391.
  • Ran, L.; Yang, Y.; Zhou, X.; Jiang, X.; Hu, D.; Lu, P. The Enantioselective Toxicity and Oxidative Stress of Dinotefuran on Zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 226, 112809. DOI: 10.1016/j.ecoenv.2021.112809.
  • ANVISA (Agência Nacional de Vigilância Sanitária). Monografias de agrotócios autoriadas D55 Dinotefuran. https://www.gov.br/anvisa/pt-br/setorregulado/regularizacao/agrotoxicos/monografias/monografias-autorizadas/d/4307json-file-1/view (accessed Nov 26, 2022).
  • Hallmann, C. A.; Foppen, R. P. B.; Van Turnhout, C. A. M.; De Kroon, H.; Jongejans, e Declines in Insectivorous Birds Are Associated with High Neonicotinoid Concentrations. Nature 2014, 511, 341–343. DOI: 10.1038/nature13531.
  • Morrissey, C. A.; Mineau, P.; Devries, J. H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M. C.; Liber, K. Neonicotinoid Contamination of Global Surface Waters and Associated Risk to Aquatic Invertebrates: A Review. Environ. Int. 2015, 74, 291–303. DOI: 10.1016/j.envint.2014.10.024.
  • Liu, X.; Zhou, Y.; Ma, Y.; Fang, S.; Kong, F.; Pang, X. Photocatalytic Degradation of Dinotefuran by Layered Phosphorus-Doped Carbon Nitride and Its Mechanism. J. Photochem. Photobiol. A Chem. 2021, 414, 113287. DOI: 10.1016/j.jphotochem.2021.113287.
  • Ramos-Peralonso, M. J. European Food Safety Authority (EFSA), Encyclop. Toxicol. 2014, 2, 554–556. DOI: 10.1016/B978-0-12-386454-3.00563-7.
  • Stehle, S.; Schulz, R. Agricultural Insecticides Threaten Surface Waters at the Global Scale. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 5750–5755. DOI: 10.1073/pnas.1500232112.
  • Thompson, D. A.; Kolpin, D. W.; Hladik, M. L.; Barnes, K. K.; Vargo, J. D.; Field, R. W. Prevalence of Neonicotinoids and Sulfoxaflor in Alluvial Aquifers in a High Corn and Soybean Producing Region of the Midwestern United States. Sci. Total Environ. 2021, 782, 146762. DOI: 10.1016/j.scitotenv.2021.146762.
  • Berens, M. J.; Capel, P. D.; Arnold, W. A. Neonicotinoid Insecticides in Surface Water, Groundwater, and Wastewater across Land-Use Gradients and Potential Effects. Environ. Toxicol. Chem. 2021, 40, 1017–1033. DOI: 10.1002/etc.4959.
  • Watanabe, E.; Iwafune, T.; Baba, K.; Kobara, Y.; Baba, K.; Kobara, Y. Organic Solvent-Saving Sample Preparation for Systematic Residue Analysis of Neonicotinoid Insecticides in Agricultural Products Using Liquid Chromatography − Diode Array Detection. Food Anal. Methods 2016, 9, 245–254. DOI: 10.1007/s12161-015-0189-4.
  • Farouk, M.; Abd, L.; Hussein, E. A.; Fathy, N.; Azab, E. Simultaneous Determination of Three Neonicotinoid Insecticide Residues and Their Metabolite in Cucumbers and Soil by Quechers Clean up and Liquid Chromatography with Diode-Array Detection. Anal. Methods 2016, 8, 4563–4575. DOI: 10.1039/C6AY01161F.
  • Chen, Z.; Dong, F.; Ren, X.; Wu, X.; Yuan, L.; Li, L.; Li, W.; Zheng, Y. Enantioselective Fate of Dinotefuran from Tomato Cultivation to Home Canning for Refining Dietary Exposure. J. Hazard. Mater. 2021, 405, 124254. DOI: 10.1016/j.jhazmat.2020.124254.
  • Li, X.; Zhang, M.; Li, Y.; Yu, X.; Nie, J. Effect of Neonicotinoid Dinotefuran on Root Exudates of Brassica rapa var. chinensis. Chemosphere 2021, 266, 129020. DOI: 10.1016/j.chemosphere.2020.129020.
  • Silveira, M. T.; Domingos, R. A.; Queiroz, M. E. L. R.; Neves, A. A.; Coutrim, M. X.; Afonso, R. J. C. F.; da Silva, A. G. Study of Analytical Techniques to Determine Chlorpyrifos in the Surface Waterways of the Rural Zone of Ouro Branco, Brazil: A Case Study. Water Air Soil Pollut. 2016, 17, 227–335.
  • Mesquita, T. C. R.; Santos, R. R.; Cacique, A. P.; De Sá, L. J.; Silvério, F. O.; Pinho, G. P. Easy and Fast Extraction Methods to Determine Organochlorine Pesticides in Sewage Sludge, Soil, and Water Samples Based at Low Temperature. J. Environ. Sci. Health B 2018, 53, 199–206. DOI: 10.1080/03601234.2017.1405626.
  • Morais, E. H. d C.; Rodrigues, A. A. Z.; Queiroz, M. E. L. R. d.; Neves, A. Ô. A.; Morais, P. H. D. Determination of Thiamethoxam, Triadimenol and Deltamethrin in Pineapple Using SLE-LTP Extraction and Gas Chromatography. Food Control 2014, 42, 9–17. DOI: 10.1016/j.foodcont.2014.01.024.
  • INMETRO. Guidance in validation of analytical methods. Inst. Nac. Metrol. Qual. e Tecnol. 2016, 31. http://www.inmetro.gov.br/Sidoq/Arquivos/CGCRE/DOQ/DOQ-CGCRE-8_05.pdf (accessed Oct 30, 2022).
  • Pihlstrom, T.; Fernández-Alba, A. R.; Gamón, M.; Amate, C. F.; Poulsen, M. E.; Lippold, R.; Anastassiades, M. Analytical quality control and method validation procedures for pestice residues analysis in food and feed. Sante/11813/2017, 2018, 42.
  • Zhang, Y.; Zhang, Q.; Li, S.; Zhao, Y.; Chen, D.; Wu, Y. Simultaneous Determination of Neonicotinoids and Fipronils in Tea Using a Modified Quechers Method and Liquid Chromatography-High Resolution Mass Spectrometry. Food Chem. 2020, 329, 127159. DOI: 10.1016/j.foodchem.2020.127159.
  • Xiong, J.; Tan, B.; Ma, X.; Li, H.; You, J. Tracing Neonicotinoid Insecticides and Their Transformation Products from Paddy Field to Receiving Waters Using Polar Organic Chemical Integrative Samplers. J. Hazard. Mater. 2021, 413, 125421. DOI: 10.1016/j.jhazmat.2021.125421.
  • Zhang, H.; Aspinall, J. V.; Lv, W.; Zheng, X.; Zhang, H.; Li, S.; Zhang, J.; Bai, N.; Zhang, Y.; Wang, X. Differences in Kinetic Metabolomics in Eisenia Fetida under Single and Dual Exposure of Imidacloprid and Dinotefuran at Environmentally Relevant Concentrations. J. Hazard. Mater. 2021, 417, 126001. DOI: 10.1016/j.jhazmat.2021.126001.
  • Wu, C.; Pan, S.; Shan, Y.; Cui, J.; Ma, Y. Residue Status and Risk Assessment of Neonicotinoids under Real Field Conditions: Based on a Two-Year Survey of Cotton Fields throughout China. Environ. Technol. Innov. 2022, 28, 102689. DOI: 10.1016/j.eti.2022.102689.
  • Nimako, C.; Ichise, T.; Hasegawa, H.; Akoto, O.; Boadi, N. O.; Taira, K.; Fujioka, K.; Isoda, N.; Nakayama, S. M. M.; Ishizuka, M.; et al. Assessment of Ameliorative Effects of Organic Dietary Interventions on Neonicotinoid Exposure Rates in a Japanese Population. Environ. Int. 2022, 162, 107169. DOI: 10.1016/j.envint.2022.107169.
  • Silvério, F. O.; Silva, J. G. S.; Aguiar, M. C. S.; Cacique, A. P.; Pinho, G. P. de. Análise de agrotóxicos em água usando extração líquido-líquido com partição em baixa temperatura por cromatografia líquida de alta eficiência. Quím. Nova 2012, 35, 2052–2056. DOI: 10.1590/S0100-40422012001000027.
  • Rahman, M. M.; Park, J. H.; Abd El-Aty, A. M.; Choi, J. H.; Yang, A.; Park, K. H.; Nashir Uddin Al Mahmud, M.; Im, G. J.; Shim, J. H. Feasibility and Application of an HPLC/UVD to Determine Dinotefuran and Its Shorter Wavelength Metabolites Residues in Melon with Tandem Mass Confirmation. Food Chem. 2013, 136, 1038–1046. DOI: 10.1016/j.foodchem.2012.08.064.
  • Rahman, M. M.; Abd El-Aty, A. M.; Choi, J. H.; Kim, S. W.; Shin, S. C.; Shim, J. H. Consequences of the Matrix Effect on Recovery of Dinotefuran and Its Metabolites in Green Tea during Tandem Mass Spectrometry Analysis. Food Chem. 2015, 168, 445–453. DOI: 10.1016/j.foodchem.2014.07.095.
  • Epa; Ocspp; Opp. US EPA–ECM for Dinotefuran & Degradates in Soil/Water–MRID 48548801.14p. https://www.epa.gov/sites/default/files/2019-10/documents/der-dinotefuran-soil-water-mrid-48548801.pdf (accessed Oct 20, 2022).
  • FAO; WHO. Pesticide Residues in Food 2012 in The Annual Joint Meeting of the FAO Panel of Experts on Pesticide Residues; 2012, 13–15. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report12/JMPR_2012_Report.pdf (accessed Nov 20, 2022).
  • APVMA Product Starkle 200 SG Insecticide; KINGSTON ACT 2604 Australia, 2015, 47. https://apvma.gov.au/sites/default/files/publication/18426 (accessed Oct 15, 2022).
  • De Souza, S. V. C.; Junqueira, R. G. A. Procedure to Assess Linearity by Ordinary Least Squares Method. Anal. Chim. Acta 2005, 552, 25–35. DOI: 10.1016/j.aca.2005.07.043.
  • Bazilio, F. S.; Bomfim, M. V. J.; Almeida, R. J.; Abrantes, S. M. P. Uso de planilha eletrônica na verificação da adequação de curva analítica ao modelo linear. Rev. Anal. 2012, 59, 60–67.
  • Thompson, D. A.; Hruby, C. E.; Vargo, J. D.; Field, R. W. Occurrence of Neonicotinoids and Sulfoxaflor in Major Aquifer Groups in Iowa. Chemosphere 2021, 281, 130856. DOI: 10.1016/j.chemosphere.2021.130856.
  • Kim, J.; Wang, W.; Lee, S.; Park, J.-H.; Oh, J.-E. Concentrations and Distributions of Neonicotinoids in Drinking Water Treatment Plants in South Korea. Environ. Pollut. 2021, 288, 117767. DOI: 10.1016/j.envpol.2021.117767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.