Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 2
127
Views
1
CrossRef citations to date
0
Altmetric
Articles

Sol-gel and Pechini niobium modified: synthesis, characterization and application in the 2,4-D herbicide degradation

, , , , , & ORCID Icon show all

References

  • INCA. Causas e Prevenção: Agrotóxicos. https://www.inca.gov.br/exposicao-no-trabalho-e-no-ambiente/agrotoxicos.
  • IBAMA. https://www.gov.br/ibama/pt-br/assuntos/quimicos-e-biologicos/agrotoxicos/paineis-de-informacoes-de-agrotoxicos/paineis-de-informacoes-de-agrotoxicos#Painel-comercializacao.
  • Madhav, S.; Ahamad, A.; Singh, A. K.; Kushawaha, J.; Chauhan, J. S.; Sharma, S.; Singh, P. Water Pollutants: Sources and Impact on the Environment and Human Health. In Sensors in Water Pollutants Monitoring: Role of Material, Pooja, D., Kumar, P., Singh, P., Patil, S., Eds. Springer Singapore: Singapore, 2020; pp 43–62.
  • Trivedi, N. S.; Mandavgane, S. A. Fundamentals of 2, 4 Dichlorophenoxyacetic Acid Removal from Aqueous Solutions. Sep. Purif. Rev. 2018, 47, 337–354. DOI: 10.1080/15422119.2018.1450765.
  • Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D. Heterogeneous Photocatalytic Organic Synthesis: State-of-the-Art and Future Perspectives. Green Chem. 2016, 18, 5391–5411. DOI: 10.1039/C6GC01582D.
  • Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. DOI: 10.1016/j.surfrep.2008.10.001.
  • Abdullah, A. M.; Al-Thani, N. J.; Tawbi, K.; Al-Kandari, H. Carbon/Nitrogen-Doped TiO2: New Synthesis Route, Characterization and Application for Phenol Degradation. Arab. J. Chem. 2016, 9, 229–237. DOI: 10.1016/j.arabjc.2015.04.027.
  • Pelaez, M.; Nolan, N. T.; Pillai, S. C.; Seery, M. K.; Falaras, P.; Kontos, A. G.; Dunlop, P. S.; Hamilton, J. W.; Byrne, J.; O'Shea, K.; et al. A Review on the Visible Light Active Titanium Dioxide Photocatalysts for Environmental Applications. Appl. Catal. B 2012, 125, 331–349. DOI: 10.1016/j.apcatb.2012.05.036.
  • Espino-Estévez, M. R.; Fernández-Rodríguez, C.; González-Díaz, O. M.; Araña, J.; Espinós, J. P.; Ortega-Méndez, J. A.; Doña-Rodríguez, J. M. Effect of TiO2–Pd and TiO2–Ag on the Photocatalytic Oxidation of Diclofenac, Isoproturon and Phenol. Chem. Eng. J. 2016, 298, 82–95. DOI: 10.1016/j.cej.2016.04.016.
  • Léonard, G. L.-M.; Pàez, C. A.; Ramírez, A. E.; Mahy, J. G.; Heinrichs, B. Interactions between Zn2+ or ZnO with TiO2 to Produce an Efficient Photocatalytic, Superhydrophilic and Aesthetic Glass. J. Photochem. Photobiol. A Chem. 2018, 350, 32–43. DOI: 10.1016/j.jphotochem.2017.09.036.
  • Zhao, Y.; Zhou, X.; Ye, L.; Chi Edman Tsang, S. Nanostructured Nb2O5 Catalysts. Nano Rev. 2012, 3, 17631. DOI: 10.3402/nano.v3i0.17631.
  • Fidelis, M. Z.; Abreu, E.; Santos, O. D.; Chaves, E. S.; Brackmann, R.; Dias, D. T.; Lenzi, G. G. Experimental Design and Optimization of Triclosan and 2.8-Diclorodibenzeno-p-Dioxina Degradation by the Fe/Nb2O5/UV System. Catalysts 2019, 9, 343. DOI: 10.3390/catal9040343.
  • Lenzi, G. G.; Fávero, C. V. B.; Colpini, L. M. S.; Bernabe, H.; Baesso, M. L.; Specchia, S.; Santos, O. A. A. Photocatalytic Reduction of Hg(II) on TiO2 and Ag/TiO2 Prepared by the Sol–Gel and Impregnation Methods. Desalination 2011, 270, 241–247. DOI: 10.1016/j.desal.2010.11.051.
  • Fidelis, M.; Favaro, Y. B.; Santos, A. S. G. G.; dos, M. F. R.; Pereira, R.; Brackmann, G.; Lenzi, O. S. G. P.; Soares, O. A.; Andreo, B. Enhancing Ibuprofen and 4-Isobutylacetophenone Degradation: Exploiting the Potential of Nb2O5 Sol-Gel Catalysts in Photocatalysis, Catalytic Ozonation, and Photocatalytic Ozonation. J. Environ. Chem. Eng. 2023, 11, 110690. DOI: 10.1016/j.jece.2023.110690.
  • Escobar, J.; Antonio De Los Reyes, J.; Viveros, T. Nickel on TiO2-Modified Al2O3 Sol–Gel Oxides: Effect of Synthesis Parameters on the Supported Phase Properties. Appl. Catal. A Gen. 2003, 253, 151–163. DOI: 10.1016/S0926-860X(03)00501-5.
  • Zhao, Z.; Omer, A. A.; Qin, Z.; Osman, S.; Xia, L.; Singh, R. P. Cu/N-Codoped TiO2 Prepared by the Sol-Gel Method for Phenanthrene Removal under Visible Light Irradiation. Environ. Sci. Pollut. Res. Int. 2020, 27, 17530–17540. DOI: 10.1007/s11356-019-05787-7.
  • Castilhos, S.; Souza, F. d.; Colpini, L. M. S.; Mattos Jorge, L. d.; Santos, O. d Assessment Comparison of Commercial TiO2 and TiO2 Sol-Gel on the Degradation of Caffeine Using Artificial Radiation. Environ. Sci. Pollut. Res. Int. 2020, 27, 22155–22168. DOI: 10.1007/s11356-020-07748-x.
  • Faisal, M.; Harraz, F. A.; Jalalah, M.; Alsaiari, M.; Al-Sayari, S. A.; Al-Assiri, M. S. Polythiophene Doped ZnO Nanostructures Synthesized by Modified Sol-Gel and Oxidative Polymerization for Efficient Photodegradation of Methylene Blue and Gemifloxacin Antibiotic. Mater. Today Commun. 2020, 24, 101048. DOI: 10.1016/j.mtcomm.2020.101048.
  • Brasileiro, I. L. O.; Madeira, V. S.; Souza, C. d.; Lopes-Moriyama, A. L.; Ramalho, M. d A.; Araújo, A. A. D. Development of α-Fe2O3/Nb2O5 Photocatalysts by a Pechini Sol–Gel Route: Structural, Morphological and Optical Influence. Mater. Res. Express 2018, 6, 015043. DOI: 10.1088/2053-1591/aae8cb.
  • Gomes, G. H. M.; Gabriel, J. B.; Bruziquesi, C. G. O.; Victoria, H. V.; Krambrock, K.; Oliveira, L. C. A.; Mohallem, N. D. S. The Role of Oxygen Vacancies in TT-Nb2O5 Nanoparticles for the Photoconversion of Glycerol into Solketal. Ceram. Int. 2023, 49, 14719–14732. DOI: 10.1016/j.ceramint.2023.01.068.
  • Pechini, M. P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. US Patent No. 333069. 1967.
  • Castro, D. C.; Cavalcante, R. P.; Jorge, J.; Martines, M. A. U.; Oliveira, L. C. S.; Casagrande, G. A.; Machulek, A.Jr. Synthesis and Characterization of Mesoporous Nb2O5 and Its Application for Photocatalytic Degradation of the Herbicide Methylviologen. J. Braz. Chem. Soc. 2015, 27, 1–11. DOI: 10.5935/0103-5053.20150244.
  • Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-Plant Evaluation of TiO2 and TiO2-Based Hybrid Photocatalysts for Solar Treatment of Polluted Water. J. Hazard Mater. 2016, 320, 469–478. DOI: 10.1016/j.jhazmat.2016.08.013.
  • Liu, J.; Zhang, T.; Wang, Z.; Dawson, G.; Chen, W. Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity. J. Mater. Chem. 2011, 21, 14398. DOI: 10.1039/c1jm12620b.
  • Sotillo, B.; López, F. A.; Alcaraz, L.; Fernández, P. Characterization of Nb22O54 Microrods Grown from Niobium Oxide Powders Recovered from Mine Tailings. Ceram. Int. 2021, 47, 13859–13864. DOI: 10.1016/j.ceramint.2021.01.252.
  • Wang, Y.-D.; Yang, L.-F.; Zhou, Z.-L.; Li, Y.-F.; Wu, X.-H. Effects of Calcining Temperature on Lattice Constants and Gas-Sensing Properties of Nb2O5. Mater. Lett. 2001, 49, 277–281. DOI: 10.1016/S0167-577X(00)00384-0.
  • Gomes, G. H. M.; Mohallem, N. D. S. Insights into the TT-Nb2O5 Crystal Structure Behavior. Mater. Lett. 2022, 318, 132136. DOI: 10.1016/j.matlet.2022.132136.
  • Gonçalves, G.; Lenzi, M. K.; Santos, O. A. A.; Jorge, L. M. M. Preparation and Characterization of Nickel Based Catalysts on Silica, Alumina and Titania Obtained by Sol–Gel Method. J. Non. Cryst. Solids 2006, 352, 3697–3704. DOI: 10.1016/j.jnoncrysol.2006.02.120.
  • Wu, Y.; Wang, X. Preparation and Characterization of Single-Phase α-Fe2O3 Nano-Powders by Pechini Sol–Gel Method. Mater. Lett. 2011, 65, 2062–2065. DOI: 10.1016/j.matlet.2011.04.004.
  • Abreu, E.; Fidelis, M. Z.; Fuziki, M. E.; Malikoski, R. M.; Mastsubara, M. C.; Imada, R. E.; Diaz de Tuesta, J. L.; Gomes, H. T.; Anziliero, M. D.; Baldykowski, B.; et al. Degradation of Emerging Contaminants: Effect of Thermal Treatment on Nb2O5 as Photocatalyst. J. Photochem. Photobiol. A Chem. 2021, 419, 113484. DOI: 10.1016/j.jphotochem.2021.113484.
  • Kosmulski, M. The pH-Dependent Surface Charging and the Points of Zero Charge. J. Colloid Interface Sci. 2002, 253, 77–87. DOI: 10.1006/jcis.2002.8490.
  • Hiratsuka, R. S.; Santilli, C. V.; Pulcinelli, S. H. Vol18No2_171_v18_n2_08.pdf. Química Nova. 1995.
  • Oliveira, H. F.; de, N.; Trinca, R. B.; Gushikem, Y. Síntese e Estudo de Ortossilicatos de Zinco Luminescentes Com Aplicação da Técnica Sol-Gel. Quím. Nova 2009, 32, 1346–1349. DOI: 10.1590/S0100-40422009000500045.
  • Lenzi, G. G.; Freitas, P.; Fidelis, M. Z.; Ribeiro, M. A.; Brackmann, R.; Colpini, L. M. S.; Tusset, A. M. Paraquat Degradation by Photocatalysis: Experimental Desing and Optimization. J. Environ. Sci. Health B 2021, 56, 523–531. DOI: 10.1080/03601234.2021.1913020.
  • da Fonseca, B. T.; D'Elia, E.; Siqueira Júnior, J. M.; de Oliveira, S. M.; Dos Santos Castro, K. L.; Ribeiro, E. S. Study of the Characteristics and Properties of the SiO2/TiO2/Nb2O5 Material Obtained by the Sol–Gel Process. Sci. Rep. 2021, 11, 1106. DOI: 10.1038/s41598-020-80310-4.
  • Raba, A. M.; Bautista-Ruíz, J.; Joya, M. R. Synthesis and Structural Properties of Niobium Pentoxide Powders: A Comparative Study of the Growth Process. Mat. Res. 2016, 19, 1381–1387. DOI: 10.1590/1980-5373-mr-2015-0733.
  • Falk, G.; Borlaf, M.; López-Muñoz, M. J.; Fariñas, J. C.; Neto, J. B. R.; Moreno, R. Microwave-Assisted Synthesis of Nb2O5 for Photocatalytic Application of Nanopowders and Thin Films. J. Mater. Res. 2017, 32, 3271–3278. DOI: 10.1557/jmr.2017.93.
  • Oliveira, J. A.; Reis, M. O.; Pires, M. S.; Ruotolo, L.; A. M.; Ramalho, T. C.; Oliveira, C. R.; Lacerda, L. C. T.; Nogueira, F. G. E. Zn-Doped Nb2O5 Photocatalysts Driven by Visible-Light: An Experimental and Theoretical Study. Mater. Chem. Phys. 2019, 228, 160–167. DOI: 10.1016/j.matchemphys.2019.02.062.
  • Fakhri, M. A.; Khalid, F. G.; Salim, E. T. Influence of Annealing Temperatures on Nb2O5 Nanostructures Prepared Using Pulsed Laser Deposition Method. J. Phys. Conf. Ser. 2021, 1795, 12063.
  • Colpini, L. M. S.; Real, L. R.; Makuda, J. L.; Nicolini, M. V. S.; Abreu, E.; Fidelis, M. Z.; Lenzi, G. G. Discoloration of Methylene Blue Dye Using Nb2O5/UV and Nb2O5/Solar Systems/Descoloração Do Corante Azul de Metileno Utilizando Sistemas Nb2O5/UV e Nb2O5/Solar. BJD 2020, 6, 30859–30880. DOI: 10.34117/bjdv6n5-518.
  • Rezaei, R.; Mohseni, M. Impact of pH on the Kinetics of Photocatalytic Oxidation of 2,4-Dichlorophenoxy Acetic Acid in a Fluidized Bed Photocatalytic Reactor. Appl. Catal. B Environ. 2017, 205, 302–309. DOI: 10.1016/j.apcatb.2016.12.038.
  • Masini, J. C.; Abate, G. Guidelines to Study the Adsorption of Pesticides onto Clay Minerals Aiming at a Straightforward Evaluation of Their Removal Performance. Minerals 2021, 11, 1282. DOI: 10.3390/min11111282.
  • Lee, S. C.; Hasan, N.; Lintang, H. O.; Shamsuddin, M.; Yuliati, L. Photocatalytic Removal of 2,4-Dichlorophenoxyacetic Acid Herbicide on Copper Oxide/Titanium Dioxide Prepared by co-Precipitation Method. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107, 12012.
  • Sandeep S.; Nagashree, K. L.; Maiyalagan, T.; Keerthiga, G. Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid – A Comparative Study in Hydrothermal TiO2 and Commercial TiO2. Appl. Surf. Sci. 2018, 449, 371–379. DOI: 10.1016/j.apsusc.2018.02.051.
  • Jokar Baloochi, S.; Solaimany Nazar, A. R.; Farhadian, M. 2,4-Dichlorophenoxyacetic Acid Herbicide Photocatalytic Degradation by Zero-Valent Iron/Titanium Dioxide Based on Activated Carbon. Environ. Nanotechnology, Monit. Manag. 2018, 10, 212–222. DOI: 10.1016/j.enmm.2018.07.008.
  • Amiri, F.; Dehghani, M.; Amiri, Z.; Yousefinejad, S.; Azhdarpoor, A. Photocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid from Aqueous Solutions by Ag3PO4/TiO2 Nanoparticles under Visible Light: Kinetic and Thermodynamic Studies. Water Sci. Technol. 2021, 83, 3110–3122. DOI: 10.2166/wst.2021.193.
  • Castañeda Martínez, C. P.; Alvarado Ortega, I. A.; Rojas Sarmiento, H. A.; Tzompantzi Morales, F. J.; Gómez Romero, J. R. Degradación fotocatalítica del herbicida ácido 2,4-diclorofenoxiacético empleando materiales de iridio soportado. Cienc. En Desarro 2021, 12, (1 SE-Artículos de investigación/Research papers), 125–134. DOI: 10.19053/01217488.v12.n1.2021.12447.
  • Cai, J.; Zhou, M.; Yang, W.; Pan, Y.; Lu, X.; Serrano, K. G. Degradation and Mechanism of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Thermally Activated Persulfate Oxidation. Chemosphere 2018, 212, 784–793. DOI: 10.1016/j.chemosphere.2018.08.127.
  • Chen, H.; Zhang, Z.; Feng, M.; Liu, W.; Wang, W.; Yang, Q.; Hu, Y. Degradation of 2,4-Dichlorophenoxyacetic Acid in Water by Persulfate Activated with FeS (Mackinawite). Chem. Eng. J. 2017, 313, 498–507. DOI: 10.1016/j.cej.2016.12.075.
  • Lopes, O. F.; Mendonça, V. D.; Silva, F. B. F.; Paris, E. C.; Ribeiro, C.; Federal, U.; Carlos, D. S.; Química, D. D.; Luiz, R. W. Niobium Oxides: An Overview of the Synthesis Of Nb2O5 and its Application in Heterogeneous Photocatalysis. Sp, S.C. Quim. Nova 2015, 38, 106–117.
  • PubChem Compound Summary for CID 8449. National Center for Biotechnology Information, 2023. https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Dichlorophenol (accessed November 2023).
  • PubChem Compound Summary for CID 301. National Center for Biotechnology Information, 2023. https://pubchem.ncbi.nlm.nih.gov/compound/Chlorohydroquinone. (accessed November 2023).
  • PubChem Compound Summary for CID 10787. National Center for Biotechnology Information, 2023. https://pubchem.ncbi.nlm.nih.gov/compound/1_2_4-Benzenetriol. (accessed November 2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.