Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 6
61
Views
0
CrossRef citations to date
0
Altmetric
Articles

In vitro and in vivo screening of bacterial species from contaminated soil for heavy metal biotransformation activity

, &
Pages 315-332 | Received 19 Apr 2023, Accepted 30 Mar 2024, Published online: 27 Apr 2024

References

  • Zhang, W. J.; Jiang, F. B.; Ou, J. F. Global Pesticide Consumption and Pollution: With China as a Focus. Proc. Int. Acad. Ecol. Environ. Sci. 2011, 1, 125–144.
  • Igiri, B. E.; Okoduwa, S. I.; Idoko, G. O.; Akabuogu, E. P.; Adeyi, A. O.; Ejiogu, I. K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 2568016–2568038. DOI: 10.1155/2018/.2568038
  • Siddiquee, S.; Rovina, K.; Azad, S. A.; Naher, L.; Suryani, S.; Chaikaew, P. Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review. J. Microb. Biochem. Technol. 2015, 07, 384–395. DOI: 10.4172/1948-5948.1000243.
  • Arao, T.; Ishikawa, S.; Murakam, I. M.; Abe, K.; Maejima, Y.; Makino, T. Heavy Metal Contamination of Agricultural Soil and Countermeasures in Japan. Paddy Water Environ. 2010, 8, 247–257. DOI: 10.1007/s10333-010-0205-7.
  • Islam, E.; Khan, M. T.; Irem, S. Biochemical Mechanisms of Signaling: Perspectives in Plants under Arsenic Stress. Ecotoxicol. Environ. Saf. 2015, 114, 126–133. DOI: 10.1016/j.ecoenv.2015.01.017.
  • Poli, A.; Salerno, A.; Laezza, G.; Di Donato, P.; Dumontet, S.; Nicolaus, B. Heavy Metal Resistance of Some Thermophiles: Potential Use of α-Amylase from Anoxybacillus amylolyticus as a Microbial Enzymatic Bioassay. Res. Microbiol. 2009, 160, 99–106. DOI: 10.1016/j.resmic.2008.10.012.
  • Deepa, C. N.; Suresha, S. Biosorption of Lead (II) from Aqueous Solution and Industrial Effluent by Using Leaves of Araucaria Cookii: Application of Response Surface Methodology. IOSRJESTFT 2014, 8, 67–79. DOI: 10.9790/2402-08716779.
  • Hrynkiewicz, K.; Baum, C. Application of Microorganisms in Environment Bioremediation from Heavy Metals. In Environmental Deterioration and Human Health, Springer, Dordrecht. 2014; pp. 215–227.
  • Su, C. A Review on Heavy Metal Contamination in the Soil Worldwide: Situation, Impact and Remediation Techniques. Environ. Skept. Critics 2014, 3, 24.
  • Okolo, N. V.; Olowolafe, E. A.; Akawu, I.; Okoduwa, S. I. R. Effects of Industrial Effluents on Soil Resources in Challawa Industrial Area, Kano, Nigeria. J. Glob. Ecol. Environ. 2016, 5, 1–10.
  • Ferraz, P.; Fernanda Fidalgo, F.; Almeida, A.; Teixeira, J. Phytostabilization of Nickel by the Zinc and Cadmium Hyperaccumulator Solanum Nigrum L. Are Metallothioneins Involved? Plant Physiol. Biochem. 2012, 57, 254–260. DOI: 10.1016/j.plaphy.2012.05.025.
  • Yu, M. H. Impacts of Environmental Toxicants on Living Systems. Environmental Toxicology CRC Press LLC, Boca Raton, 2001; pp. 114–115.
  • Rasmussen, L. D.; Sørensen, S. J.; Turner, R. R.; Barkay, T. Application of a Merlux Biosensor for Estimating Bioavailable Mercury in Soil. Soil Biology & Biochemistry 2000, 32, 639–646. DOI: 10.1016/S0038-0717(99)00190-X.
  • Gauthier, P. T.; Norwood, W. P.; Prepas, E. E.; Pyle, G. G. Metal–PAH Mixtures in the Aquatic Environment: A Review of co-Toxic Mechanisms Leading to More-than-Additive Outcomes. Aquat. Toxicol. 2014, 154, 253–269. DOI: 10.1016/j.aquatox.
  • Cervantes, C.; Campos-García, J.; Devars, S.; Gutiérrez Corona, F.; Loza-Tavera, H.; Torres-Guzmán, J. C.; Moreno-Sánchez, R. Interactions of Chromium with Microorganisms and Plants. FEMS Microbiol. Rev. 2001, 25, 335–347. DOI: 10.1111/j.1574-6976.00581.
  • Qazilbash, A. A. Isolation and Characterization of Heavy Metal Tolerant Biota from Industrially Polluted Soils and Their Role in Bioremediation. Biological Science 2004, 41, 210–256.
  • Cánovas, D.; Cases, I.; de Lorenzo, V. Heavy Metal Tolerance and Metal Homeostasis in Pseudomonas putida as Revealed by Complete Genome Analysis. Environ. Microbiol. 2003, 5, 1242–1256. DOI: 10.1111/j.1462-2920.2003.00463.x.
  • Hu, N.; Luo, Y.; Song, J.; Wu, L.; Zhang, H. Influences of Soil Organic Matter, pH and Temperature on Pb Sorption by Four Soils in Yangtze River Delta. Acta Pedologica Sinica 2010, 47, 246–252.
  • Pishchik, V.; Vorobyev, I.; Chernyaeva, S.; Timofeeva, A.; Kozhemyakov, A.; Alexeev, Y.; Lukin, S. Experimental and Mathematical Simulation of Plant Growth Promoting Rhizobacteria and Plant Interaction under Cadmium Stress. Plant and Soil 2002, 243, 173–186. DOI: 10.1023/A:1019941525758.
  • Ahirwar, N. K.; Gupta, G.; Singh, R.; Singh, V. Isolation, Identification and Characterization of Heavy Metal Resistant Bacteria from Industrial Affected Soil in Central India. Int. J. Pure App. Biosci 2016, 4, 88–93. DOI: 10.18782/2320-7051.2424.
  • Malekzadeh, F.; Farazmand, A.; Ghafourian, H.; Shahamat, M.; Levin, M.; Colwell, R. R. Uranium Accumulation by a Bacterium Isolated from Electroplating Effluent. World J. Microbiol. Biotechnol. 2002, 18, 295–302. DOI: 10.1023/A:1015215718810.
  • Nobaharan, K.; Abtahi, A.; Asgari Lajayer, B.; van Hullebusch, E. D. Effects of Biochar Dose on Cadmium Accumulation in Spinach and Its Fractionation in a Calcareous Soil. Arab. J. Geosci. 2022, 15, 336. DOI: 10.1007/s12517-022-09608-z.
  • Spermaceti, I.; Varma, A. Soil heavy metals. In Soil Biology, Springer nature: Germany, 2009; p. 19.
  • Molalign, M. T.; Fikirte, Z. S.; Alemitu, I. I. Microbes Used as a Tool for Bioremediation of Heavy Metal from the Environment. Cogent Food Agricult. 2020, 6, 1–19. DOI: 10.1080/23311932.2020.1783174.
  • Mengoni, A.; Barabesi, C.; Gonnelli, C.; Galardi, F.; Gabbrielli, R.; Bazzicalupo, M. Genetic Diversity of Heavy Metal-Tolerant Populations in Silene Paradoxa L. (Caryophyllaceae): a Chloroplast Microsatellite Analysis. Mol. Ecol. 2001, 10, 1909–1916. DOI: 10.1046/j.0962-1083.2001.01336.x.
  • Chovanová, K.; Sládeková, D.; Kmet, V.; Proksova, M.; Harichová, J.; Puskarova, A.; Harichová, J.; Puškárová, A.; Polek, B.; Ferianc, P. Identification and Characterization of Eight Cadmium Resistant Bacterial Isolates from a Cadmium-Contaminated Sewage Sludge. Biologia 2004, 59, 817–827.
  • V.k, A.; Mishra, M.; Chowdhury, S.; Sudarshan, M.; Thakur, A. R.; Chaudhuri, S. R. Studies on Metal Microbe Interaction of Three Bacterial Isolates from East Calcutta Wetland. OnLine J. Biol. Sci. 2007, 7, 80–88. DOI: 10.3844/ojbsci.2007.80.88.
  • Karelová, E.; Harichová, J.; Stojnev, T.; Pangallo, D.; Ferianc, P. The Isolation of Heavy-Metal Resistant Culturable Bacteria and Resistance Determinants from a Heavy-Metal-Contaminated site. Biologia 2011, 66, 18–26. DOI: 10.2478/s11756-010-0145-0.
  • Chang, J. S.; Hong, J. Biosorption of Mercury by the Inactivated Cells of Pseudomonas aeruginosa PU21 (Rip64). Biotechnol. Bioeng. 1994, 44, 999–1006. DOI: 10.1002/bit.260440817.
  • Palacios, O.; Leiva-Presa, A.; Atrian, S.; Lobinski, R. A Study of the Pb(II) Binding to Recombinant Mouse Zn7-Metallothionein 1 and Its Domains by ESI TOF MS. Talanta 2007, 72, 480–488. DOI: 10.1016/j.talanta.2006.11.009.
  • Kisielowska, E.; Hołda, A.; Niedoba, T. Removal of Heavy Metals from Coal Medium with Application of Biotechnological Methods. Górnictwo I Geoinzynieria 2010, 34, 93–104.
  • Kręgiel, D.; Piątkiewicz, A.; Żakowska, Z.; Kunicka-Styczyńska, A. Zanieczyszczenia Mikrobiologiczne Surowców, (w:) Mikrobiologia Techniczna: Mikroorganizmy w Biotechnologii, Ochronie Środowiska i Produkcji Żywności, Libudzisz Z., Kowal K., Żakowska Z., Eds. PWN, Warszawa, 2008; pp. 235–252.
  • Aiking, H.; Govers, H.; van ‘t Riet, J. Detoxification of Mercury, Cadmium, and Lead in Klebsiella aerogenes NCTC 418 Growing in Continuous Culture. Appl. Environ. Microbiol. 1985, 50, 1262–1267. DOI: 10.1128/aem.50.5.1262-1267.1985.
  • Jiang, C. Y.; Sheng, X. F.; Qian, M.; Wang, Q. Y. Isolation and Characterization of a Heavy Metal-Resistant Burkholderia sp. from Heavy Metal-Contaminated Paddy Field Soil and Its Potential in Promoting Plant Growth and Heavy Metal Accumulation in Metal-Polluted Soil. Chemosphere 2008, 72, 157–164. DOI: 10.1016/j.chemosphere.2008.02.006.
  • APHA Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works, Water Environment Federation, Washington DC, 2005.
  • Zvyagintsev, D. G. Methods of Soil Microbiology and Biochemistry. MSU: Moscow, 1991; p. 303.
  • Janssens, T. K. S.; Roelofs, D.; Van Straalen, N. M. Molecular Mechanisms of Heavy Metal Tolerance and Evolution in Invertebrates. Insect Sci. 2009, 16, 3–18. DOI: 10.1111/j.1744-7917.2009.00249.x.
  • Yilmaz, A. B. Levels of Heavy Metals (Fe, Cu, Ni, Cr, Pb, and Zn) in Tissue of Mugil Cephalus and Trachurus Mediterraneus from Iskenderun Bay, Turkey. Environ. Res. 2003, 92, 277–281. DOI: 10.1016/s0013-9351(02)00082-8.
  • Gadd, G. M. Bioremedial Potential of Microbial Mechanisms of Metal Mobilization and Immobilization. Curr. Opin. Biotechnol. 2000, 11, 271–279. DOI: 10.1016/s0958-1669(00)00095-1.
  • Gadd, G. M. Metals, Minerals and Microbes: Geomicrobiology and Bioremediation. Microbiology (Reading) 2010, 156, 609–643. DOI: 10.1099/mic.0.037143-0.
  • Lasat, M. M. Phytoextraction of Toxic Metals. J. of Env. Quality 2002, 31, 109–120. DOI: 10.2134/jeq2002.1090.
  • Khan, S.; Reid, B. J.; Li, G.; Zhu, Y. G. Application of Biochar to Soil Reduces Cancer Risk via Rice Consumption: A Case Study in Miaoqian Village, Longyan. China Environ. Interact. 2014, 68, 154–161. DOI: 10.1016/j.envint.
  • Pratush, A.; Kumar, A.; Hu, Z. Adverse Effect of Heavy Metals (as, Pb, Hg, and Cr) on Health and Their Bioremediation Strategies: A Review. Int. Microbiol. 2018, 21, 97–106. DOI: 10.1007/s10123-018-0012-3.
  • Chen, H.; Cutright, T. Preliminary Evaluation of Microbially Mediated Precipitation of Cadmium, Chromium, and Nickel by Rhizosphere Consortium. J. Environ. Eng. 2003, 129, 4–9. DOI: 10.1061/(ASCE)0733-9372(2003)129:1(4).
  • Lin, C. C.; Lin, H. L. Remediation of Soil Contaminated with the Heavy Metal (Cd2+). J. Hazard. Mater. 2005, 122, 7–15. DOI: 10.1016/j.jhazmat.2005.02.017.
  • Pande, V.; Pandey, S.; Sati, D.; Bhatt, P.; Samant, M. Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Front. Microbiol. 2022, 13, 824084. DOI: 10.3389/fmicb.2022.824084.
  • Bhatietal, L.; Zhou, C.; Qin, K.; Tian, W.; Qi, C.; Yan, M.; Han, X. W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. J. Soils Sediments 2019, 28, 380–394. DOI: 10.1080/15320383.2019.159210.
  • Azubuike, C. C.; Chikere, C. B.; Okpokwasili, G. C. Bioremediation Techniques–Classification Based on Site of Application: Principles, Advantages, Limitations and Prospects. World J. Microbiol. Biotechnol. 2016, 32, 180.
  • Barkay, T.; Miller, S. M.; Summers, A. O. Bacterial Mercury Resistance from Atoms to Ecosystems. FEMS Microbiol. Rev. 2003, 27, 355–384. DOI: 10.1016/S0168-6445(03)00046-9.
  • Bentley, R.; Chasteen, T. G. Microbial Methylation of Metalloids: Arsenic, Antimony, and Bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250–271. DOI: 10.1128/MMBR.66.2.250-271.2002.
  • Puyen, Z. M.; Villagrasa, E.; Maldonado, J.; Diestra, E.; Esteve, I.; Solé, A. Biosorption of Lead and Copper by Heavy-Metal Tolerant Micrococcus luteus DE 2008. Bioresour. Technol. 2012, 126, 233–237. DOI: 10.1016/j.biortech.2012.09.036.
  • Kumar, S.; Sharma, A. Cadmium Toxicity: Effects on Human Reproduction and Fertility. Rev. Environ. Health. 2019, 34, 327–338. DOI: 10.1515/reveh-2019-0016.
  • Jensen-Spaulding, A.; Shuler, M. L.; Lion, L. W. Mobilization of Adsorbed Copper and Lead from Naturally Aged Soil by Bacterial Extracellular Polymers. Water Res. 2004, 38, 1121–1128. DOI: 10.1016/j.watres.2003.11.015.
  • Roane, T. M. Lead Resistance in Two Bacterial Isolates from Heavy Metal–Contaminated Soils. Microb. Ecol. 1999, 37, 218–224. DOI: 10.1007/s002489900145.
  • Karataglis, S.; Moustakas, M.; Symeonidis, L. Effect of Heavy Metals on Isoperoxidases of Wheat. Biologia Plant. 1999, 33, 3–9. DOI: 10.1007/BF02873778.
  • Vivas, A.; Azcón, R.; Biró, B.; Barea, J. M.; Ruiz-Lozano, J. M. Influence of Bacterial Strains Isolated from Lead-Polluted Soil and Their Interactions with Arbuscular Mycorrhizae on the Growth of Trifolium pratense L. under Lead Toxicity. Can. J. Microbiol. 2003, 49, 577–588. DOI: 10.1139/w03-073.
  • Bojórquez, C.; Frías-Espericueta, M. G.; Voltolina, D, Posgrado en Ciencias en Recursos Acuáticos, Universidad Autónoma de Sinaloa. Removal of Cadmium and Lead by Adapted Strains of Pseudomonas aeruginosa and Enterobacter cloacae. Rev. Int. Contam. Ambie 2016, 32, 407–412. DOI: 10.20937/RICA.2016.32.04.04.
  • Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; D van Hullebusch, E.; Esposito, G.; Oturan, M. Removal of Hydrophobic Organic Pollutants from Soil Washing/Flushing Solutions: A Critical Review. J. Hazard. Mater. 2016, 306, 149–174. DOI: 10.1016/j.jhazmat.2015.12.008.
  • Bissonnette, L.; St-Arnaud, M.; Labrecque, M. Phytoextraction of Heavy Metals by Two Salicaceae Clones in Symbiosis with Arbuscular Mycorrhizal Fungi during the Second Year of a Field Trial. Plant Soil 2010, 332, 55–67. DOI: 10.1007/s11104-009-0273-x.
  • Dixit, R.W.; Malaviya, D.; Pandiyan,K.; Singh,U.B.; Sahu,A.; Renu Shukla,R.; Bhanu P. Singh, B.P.; Jai P. Rai, J.P. Pawan Kumar Sharma, P.K., Lade,H.; Paul,D. Review Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability. 2015, 7, 2189–2212; DOI: 10.3390/su7022189.
  • Carlot, M.; Giacomini, A.; Casella, S. Aspects of Plant-Microbe Interactions in Heavy Metal Polluted Soil. Acta Biotechnol. 2002, 22, 13–20. DOI: 10.1002/1521-3846(200205)22:1/2<13::AID-ABIO13>3.0.CO;2-9.
  • Glick, B. R. Phytoremediation: Synergistic Use of Plants and Bacteria to Clean up the Environment. Biotechnol. Adv. 2003, 21, 383–393. DOI: 10.1016/s0734-9750(03)00055-7.
  • Dimkpa, C. O.; Svatos, A.; Dabrowska, P.; Schmidt, A.; Boland, W.; Kothe, E. Involvement of Siderophores in the Reduction of Metal-Induced Inhibition of Auxin Synthesis in Streptomyces Spp. Chemosphere 2008, 74, 19–25. DOI: 10.1016/j.chemosphere.2008.09.079.
  • Sinha, S.; Mukherjee, S. K. Cadmium-Induced Siderophore Production by a High Cd-Resistant Bacterial Strain Relieved Cd Toxicity in Plants through Root Colonization. Curr. Microbiol. 2008, 56, 55–60. DOI: 10.1007/s00284-007-9038-z.
  • Ali, H.; Khan, E.; Sajad, M. A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. DOI: 10.1016/j.chemosphere.2013.01.075.
  • Lovley, D. R. Cleaning up with Genomics: Applying Molecular Biology to Bioremediation. Nat. Rev. Microbiol. 2003, 1, 35–44. DOI: 10.1038/nrmicro731.
  • Sati, D.; Pande, V.; Pandey, S. C.; Samant, M. Recent Advances in PGPR and Molecular Mechanisms Involved in Drought Stress Resistance. J. Soil Sci. Plant Nutr. 2022, 23(1), 106–124. DOI: 10.1007/s42729-021-00724-5.
  • Sannasi, P.; Kader, J.; Othman, O.; Salmijah, S. Single and Multi-Metal Removal by an Environmental Mixed Bacterial Isolate. In Modern Multidisciplinary Applied Microbiology: Exploiting Microbes and Their Interaction; A. Mendez-Vilas, Eds. 2006; Wiley Online Library, pp. 136–141.
  • Kader, J.; Sannasi, P.; Othman, O.; Ismail, B. S.; Salmijah, S. Removal of Cr (VI) from Aqueous Solutions by Growing and Non-Growing Populations of Environmental Bacterial Consortia. Global Environ. Res. 2007, 1, 12–17.
  • De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol. (NY) 2008, 10, 471–477. DOI: 10.1007/s10126-008-9083-z.
  • Sepehri, S.; Kanani, E.; Abdoli, S.; Rajput, V. D.; Minkina, T.; Asgari Lajayer, B. Removal from Aqueous Solutions by Adsorption on Stabilized Zero-Valent Iron Nanoparticles—a Green Approach. Water 2023, 15, 222. DOI: 10.3390/w15020222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.