Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 7
71
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessment of antimicrobial activity and GC-MS using culture filtrate of local marine Bacillus strains

, , , , , , , & ORCID Icon show all
Pages 399-416 | Received 13 Jan 2024, Accepted 15 May 2024, Published online: 24 May 2024

References

  • Salazar, G.; Sunagawa, S. Marine Microbial Diversity. Curr. Biol. 2017, 27, R489–R494. DOI: 10.1016/j.cub.2017.01.017.
  • Barzkar, N.; Jahromi, S. T.; Poorsaheli, H. B.; Vianello, F. Metabolites from Marine Microorganisms, Micro, and Macroalgae: Immense Scope for Pharmacology. Mar. Drugs. 2019, 17, 464. DOI: 10.3390/md17080464.
  • Rey, M. W.; Ramaiya, P.; Nelson, B. A.; Brody-Karpin, S. D.; Zaretsky, E. J.; Tang, M.; Lopez de Leon, A.; Xiang, H.; Gusti, V.; Clausen, I. G.; et al. Complete Genome Sequence of the Industrial Bacterium Bacillus licheniformis and Comparisons with Closely Related Bacillus Species. Genome Biol. 2004, 5, R77. DOI: 10.1186/gb-2004-5-10-r77.
  • Khianngam, S.; Pootaeng-On, Y.; Techakriengkrai, T.; Tanasupawat, S. Screening and Identification of Cellulase Producing Bacteria Isolated from Oil Palm Meal. Journal of Applied Pharmaceutical Science 2014, 4, 090–096.
  • Zhou, S.; Xia, Y.; Zhu, C.; Chu, W. Isolation of Marine Bacillus sp. with Antagonistic and Organic-Substances-Degrading Activities and Its Potential Application as a Fish Probiotic. Mar. Drugs. 2018, 16, 196. DOI: 10.3390/md16060196.
  • Kim, S.; Lim, S.-W.; Choi, J. Drug Discovery Inspired by Bioactive Small Molecules from Nature. Anim. Cells Syst. (Seoul) 2022, 26, 254–265. DOI: 10.1080/19768354.2022.2157480.
  • Murniasih, T.; Masteria Yunovilsa, P.; Untari, F. Antibacterial Activity and GC–MS Based Metabolite Profiles of Indonesian Marine Bacillus. Indones J Pharm 2022, 33, 475–483.
  • Yi, M.; Lin, S.; Zhang, B.; Jin, H.; Ding, L. Antiviral Potential of Natural Products from Marine Microbes. Eur. J. Med. Chem. 2020, 207, 112790. DOI: 10.1016/j.ejmech.2020.112790.
  • Cavalini, L.; Jankoski, P.; Correa, A. P. F.; Brandelli, A.; Motta, A. S. D. Characterization of the Antimicrobial Activity Produced by Bacillus sp. isolated from Wetland Sediment. An. Acad. Bras. Cienc. 2021, 93, e20201820. DOI: 10.1590/0001-3765202120201820.
  • Chen, L.; Huang, G. The Antiviral Activity of Polysaccharides and Their Derivatives. Int. J. Biol. Macromol. 2018, 115, 77–82. DOI: 10.1016/j.ijbiomac.2018.04.056.
  • Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G.; Sun, G.; Lu, Z.; Huang, Y.; Yang, C.-G.; et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017, 18, 2622–2634. DOI: 10.1016/j.celrep.2017.02.059.
  • Ding, Y.; Shi, Y.; Yang, S. Advances and Challenges in Uncovering Cold Tolerance Regulatory Mechanisms in Plants. New Phytol. 2019, 222, 1690–1704. DOI: 10.1111/nph.15696.
  • Styczynski, M.; Biegniewski, G.; Decewicz, P.; Rewerski, B.; Debiec-Andrzejewska, K.; Dziewit, L. Application of Psychrotolerant Antarctic Bacteria and Their Metabolites as Efficient Plant Growth Promoting Agents. Front. Bioeng. Biotechnol. 2022, 10, 772891. DOI: 10.3389/fbioe.2022.772891.
  • Núñez-Montero, K.; Barrientos, L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics 2018, 7, 90. DOI: 10.3390/antibiotics7040090.
  • Wen, Q.; Liu, R.; Ouyang, Z.; He, T.; Zhang, W.; Chen, X. Identification of a New Antifungal Peptide W1 from a Marine Bacillus amyloliquefaciens Reveals Its Potential in Controlling Fungal Plant Diseases. Front. Microbiol. 2022, 13, 922454. DOI: 10.3389/fmicb.2022.922454.
  • Akram, M.; Tahir, I. M.; Shah, S. M. A.; Mahmood, Z.; Altaf, A.; Ahmad, K.; Munir, N.; Daniyal, M.; Nasir, S.; Mehboob, H. Antiviral Potential of Medicinal Plants against HIV, HSV, Influenza, Hepatitis, and Coxsackievirus: A Systematic Review. Phytother. Res. 2018, 32, 811–822. DOI: 10.1002/ptr.6024.
  • Wesula Olivia, L.; Obanda, V.; Bucht, G.; Mosomtai, G.; Otieno, V.; Ahlm, C.; Evander, M. Global Emergence of Alphaviruses That Cause Arthritis in Humans. Infect. Ecol. Epidemiol. 2015, 5, 29853. DOI: 10.3402/iee.v5.29853.
  • Aziz, M.; Palmer, A.; Iversen, S.; Salazar, J. E.; Pham, T.; Roach, K.; Becker, K.; Kaspar, U.; Price, L. B.; Baig, S.; et al. Design and Validation of Dolosigranulum pigrum Specific PCR Primers Using the Bacterial Core Genome. Sci. Rep. 2023, 13, 6110. DOI: 10.1038/s41598-023-32709-y.
  • O'Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016.
  • Novikova, M.; Zhang, Y.; Freed, E. O.; Peng, K. Multiple Roles of HIV-1 Capsid during the Virus Replication Cycle. Virol. Sin. 2019, 34, 119–134. DOI: 10.1007/s12250-019-00095-3.
  • De Clercq, E. Molecular Targets for Antiviral Agents. J. Pharmacol. Exp. Ther. 2001, 297, 1–10.
  • Andryukov, B.; Mikhailov, V.; Besednova, N. The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. J. Marine Sci. Eng. 2019, 7, 176. DOI: 10.3390/jmse7060176.
  • Karmakar, P.; Pujol, C. A.; Damonte, E. B.; Ghosh, T.; Ray, B. Polysaccharides from Padina Tetrastromatica: Structural Features, Chemical Modification and Antiviral Activity. Carbohydr. Polym. 2010, 80, 513–520. DOI: 10.1016/j.carbpol.2009.12.014.
  • Barbosa, J. R.; de Carvalho Junior, R. N. Polysaccharides Obtained from Natural Edible Sources and Their Role in Modulating the Immune System: Biologically Active Potential That Can Be Exploited against COVID-19. Trends Food Sci. Technol. 2021, 108, 223–235. DOI: 10.1016/j.tifs.2020.12.026.
  • Mikhaĭlova, N.; Nagieva, F.; Grin’ko, O.; Zverev, V. Experimental Study of Antiviral Activity of Spore-Forming Bacterium Bacillus pumilus Pashkov. Zh. Mikrobiol. Epidemiol. Immunobiol. 2010, 69–74.
  • Gribencha, S.; Potselueva, L.; Barinskiĭ, I.; Deev, S.; Balandin, T.; Leshchinskaia, I. Antiviral Activity of Bacillus Intermedius RNAase in Guinea-Pigs and Rabbits Infected with Outdoor Rabies Virus. Vopr. Virusol. 2006, 51, 41–43.
  • Gribencha, S.; Potselueva, L.; Barinskiĭ, I.; Balandin, T.; Deev, S.; Leshchinskaia, I. The Antiviral Activity of RNAse Bacillus Intermedius in Experiments with Mice Preinfected with Street Rabies Virus. Vopr. Virusol. 2004, 49, 38–41.
  • Zhou, W.-W.; Niu, T.-G. Purification and Some Properties of an Extracellular Ribonuclease with Antiviral Activity against Tobacco Mosaic Virus from Bacillus cereus. Biotechnol. Lett. 2009, 31, 101–105. DOI: 10.1007/s10529-008-9831-1.
  • Aziz, T.; Xingyu, H.; Sarwar, A.; Naveed, M.; Shabbir, M. A.; Khan, A. A.; Ulhaq, T.; Shahzad, M.; Zhennai, Y.; Shami, A.; et al. Assessing the Probiotic Potential, Antioxidant, and Antibacterial Activities of Oat and Soy Milk Fermented with Lactiplantibacillus Plantarum Strains Isolated from Tibetan Kefir. Front. Microbiol. 2023, 14, 1265188. DOI: 10.3389/fmicb.2023.1265188.
  • Bastos, M. T.; Raimundo, R. L. G.; Travitzki, R. Gatekeeping Twitter: Message Diffusion in Political Hashtags. Media, Culture. Soc. 2013, 35, 260–270. DOI: 10.1177/0163443712467594.
  • Balamurugan, K.; Nishanthini, A.; Mohan, V. R. GC–MS Analysis of Polycarpaea Corymbosa (L.) Lam Whole Plant. Asian Pacif. J. Tropical Biomed. 2012, 2, S1289–S1292. DOI: 10.1016/S2221-1691(12)60402-X.
  • Willie, P.; Uyoh, E. A.; Aikpokpodion, P. O. Gas Chromatography-Mass Spectrometry (GC-MS) Assay of Bio-Active Compounds and Phytochemical Analyses in Three Species of Apocynaceae. Pharmacognosy J. 2021, 13, 49. DOI: 10.5530/pj.2021.13.49.
  • Eidelman, S.; Hayes, K.; Olive, K. e.; Aguilar-Benitez, M.; Amsler, C.; Asner, D.; Babu, K.; Barnett, R.; Beringer, J.; Burchat, P. Review of Particle Physics. Phys. Lett. B. 2004, 592, 1–5. DOI: 10.1016/j.physletb.2004.06.001.
  • Aziz, T.; Imran, M.; Haider, A.; Shahzadi, A.; Abidin, M. Z. U.; Ul-Hamid, A.; Nabgan, W.; Algaradah, M. M.; Fouda, A. M.; Ikram, M. Catalytic Performance and Antibacterial Behaviour with Molecular Docking Analysis of Silver and Polyacrylic Acid Doped Graphene Quantum Dots. RSC Adv. 2023, 13, 28008–28020. DOI: 10.1039/d3ra04741e.
  • Narayanankutty, A.; Sasidharan, A.; Job, J. T.; Rajagopal, R.; Alfarhan, A.; Kim, Y. O.; Kim, H.-J. Mango Ginger (Curcuma Amada Roxb.) Rhizome Essential Oils as Source of Environmental Friendly Biocides: Comparison of the Chemical Composition, Antibacterial, Insecticidal and Larvicidal Properties of Essential Oils Extracted by Different Methods. Environ. Res. 2021, 202, 111718. DOI: 10.1016/j.envres.2021.111718.
  • Narayanankutty, A.; Visakh, N. U.; Sasidharan, A.; Pathrose, B.; Olatunji, O. J.; Al-Ansari, A.; Alfarhan, A.; Ramesh, V. Chemical Composition, Antioxidant, anti-Bacterial, and anti-Cancer Activities of Essential Oils Extracted from Citrus Limetta Risso Peel Waste Remains after Commercial Use. Molecules. 2022, 27, 8329. DOI: 10.3390/molecules27238329.
  • Mostafa, A.; Kandeil, A.; Amm Elshaier, Y.; Kutkat, O.; Moatasim, Y.; Rashad, A. A.; Shehata, M.; Gomaa, M. R.; Mahrous, N.; Mahmoud, S. H. FDA-Approved Drugs with Potent in Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals. 2020, 13, 443. DOI: 10.3390/ph13120443.
  • Mahmoud, A.; Mostafa, A.; Al-Karmalawy, A. A.; Zidan, A.; Abulkhair, H. S.; Mahmoud, S. H.; Shehata, M.; Elhefnawi, M. M.; Ali, M. A. Telaprevir is a Potential Drug for Repurposing against SARS-CoV-2: Computational and in Vitro Studies. Heliyon. 2021, 7, e07962. DOI: 10.1016/j.heliyon.2021.e07962.
  • Hegazy, A.; Mostafa, I.; Elshaier, Y. A. M. M.; Mahmoud, S. H.; Abo Shama, N. M.; Shehata, M.; Yahya, G.; Nasr, N. F.; El-Halawany, A. M.; Ali, M. A.; et al. Robust Antiviral Activity of Santonica Flower Extract (Artemisia Cina) against Avian and Human Influenza a Viruses: In Vitro and Chemoinformatic Studies. ACS Omega. 2022, 7, 41212–41223. DOI: 10.1021/acsomega.2c04867.
  • Reed, L. J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. DOI: 10.1093/oxfordjournals.aje.a118408.
  • Hayden, F. G.; Cote, K.; Douglas, R. G.Jr, Plaque Inhibition Assay for Drug Susceptibility Testing of Influenza Viruses. Antimicrob. Agents Chemother. 1980, 17, 865–870. DOI: 10.1128/AAC.17.5.865.
  • Peng, J.-Y.; Horng, Y.-B.; Wu, C.-H.; Chang, C.-Y.; Chang, Y.-C.; Tsai, P.-S.; Jeng, C.-R.; Cheng, Y.-H.; Chang, H.-W. Evaluation of Antiviral Activity of Bacillus licheniformis-Fermented Products against Porcine Epidemic Diarrhea Virus. AMB Express. 2019, 9, 191. DOI: 10.1186/s13568-019-0916-0.
  • Mahmoud, M.; Edo, I.; Zadeh, A. H.; Awad, O. M.; Pekhimenko, G.; Albericio, J.; Moshovos, A. 2020 Tensordash: Exploiting Sparsity to Accelerate Deep Neural Network Training. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), ; IEEE: pp 781–795. DOI: 10.1109/MICRO50266.2020.00069.
  • Saber Kelany, M.; Aly Beltagy, E.; Khalil, A. E.-F.; Ahmed El-Shenawy, M.; El-Shouny, A. E. Isolation, Characterization, and Detection of Antibacterial Activity of a Bioactive Compound Produced by Marine Bacillus sp. MH20 from Suez Bay, Egypt. Novel Res. Microbiol. J. 2019, 3, 258–270.
  • Skariyachan, S. G.; Rao, A.; Patil, M.; Saikia, B.; Bharadwaj Kn, V.; Rao Gs, J. Antimicrobial Potential of Metabolites Extracted from Bacterial Symbionts Associated with Marine Sponges in Coastal Area of Gulf of Mannar Biosphere, India. Lett. Appl. Microbiol. 2014, 58, 231–241. DOI: 10.1111/lam.12178.
  • Er-Rahmani, S.; Trotta, F.; Matencio, A.; Errabiti, B.; El Abed, S.; Latrache, H.; Koraichi, S. I. Antimicrobial and Antiadhesive Activities of Secondary Metabolites against Bacillus cereus Adhesion on PLA 3D Printing Material: ADMET Tox in Silico, Molecular Docking and Molecular Dynamic Analysis. Sci. Afr. 2024, 24, e02209. DOI: 10.1016/j.sciaf.2024.e02209.
  • Deepasree, K.; Subhashree, V. Molecular Docking and Dynamic Simulation Studies of Terpenoid Compounds against Phosphatidylinositol-Specific Phospholipase C from Listeria monocytogenes. Informa. Med. 2023, 39, 101252.
  • Shafiei, M.; Toreyhi, H.; Firoozpour, L.; Akbarzadeh, T.; Amini, M.; Hosseinzadeh, E.; Hashemzadeh, M.; Peyton, L.; Lotfali, E.; Foroumadi, A. Design, Synthesis, and in Vitro and in Vivo Evaluation of Novel Fluconazole-Based Compounds with Promising Antifungal Activities. ACS Omega. 2021, 6, 24981–25001. DOI: 10.1021/acsomega.1c04016.
  • Zaitsev, M.; Hennig, J.; Speck, O. Point Spread Function Mapping with Parallel Imaging Techniques and High Acceleration Factors: Fast, Robust, and Flexible Method for Echo-Planar Imaging Distortion Correction. Magn. Reson. Med. 2004, 52, 1156–1166. DOI: 10.1002/mrm.20261.
  • Jeyaram, R.; Radha, C. A. Investigation on the Binding Properties of N1 Neuraminidase of H5N1 Influenza Virus in Complex with Fluorinated Sialic Acid Analog Compounds—a Study by Molecular Docking and Molecular Dynamics Simulations. Braz. J. Phys. 2022, 52, 21. DOI: 10.1007/s13538-021-01009-z.
  • Jeyaram, R. A.; Anu Radha, C. N1 Neuraminidase of H5N1 Avian Influenza a Virus Complexed with Sialic Acid and Zanamivir–a Study by Molecular Docking and Molecular Dynamics Simulation. J. Biomol. Struct. Dyn. 2022, 40, 11434–11447. DOI: 10.1080/07391102.2021.1962407.
  • Naveed, M.; Ali, I.; Aziz, T.; Ali, N.; Hassan, A.; Ur Rahman, S.; Aziz, R.; Alharbi, M. Assessment of Melia Azedarach Plant Extracts Activity against Hypothetical Protein of mycobacterium tuberculosis via GC-MS Analysis and in-Silico Approaches. J. Comput. Biophys. Chem. 2023, 1, 22. DOI: 10.1142/S2737416523500631.
  • Naveed, M.; Ishfaq, H.; Rehman, S. U.; Javed, A.; Waseem, M.; Makhdoom, S. I.; Aziz, T.; Alharbi, M.; Alshammari, A.; Alasmari, A. F. GC–MS Profiling of Bacillus Spp. metabolites with an in Vitro Biological Activity Assessment and Computational Analysis of Their Impact on Epithelial Glioblastoma Cancer Genes. Front. Chem. 2023, 11, 1287599. DOI: 10.3389/fchem.2023.1287599.
  • Molinski, T. F.; Dalisay, D. S.; Lievens, S. L.; Saludes, J. P. Drug Development from Marine Natural Products. Nat. Rev. Drug Discov. 2009, 8, 69–85. DOI: 10.1038/nrd2487.
  • Blunt, J. W.; Carroll, A. R.; Copp, B. R.; Davis, R. A.; Keyzers, R. A.; Prinsep, M. R. Marine Natural Products. Nat. Prod. Rep. 2018, 35, 8–53. DOI: 10.1039/c7np00052a.
  • Ashraf, A.; Shah, M. Newcastle Disease: Present Status and Future Challenges for Developing Countries. African J. Microbiol. Res. 2014, 8, 411–416. DOI: 10.5897/AJMR2013.6540.
  • Alazawy, A. K.; Al Ajeeli, K. S. Isolation and Molecular Identification of Wild Newcastle Disease Virus Isolated from Broiler Farms of Diyala Province, Iraq. Vet. World. 2020, 13, 33–39. DOI: 10.14202/vetworld.2020.33-39.
  • Pires, D. E.; Blundell, T. L.; Ascher, D. B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. DOI: 10.1021/acs.jmedchem.5b00104.
  • Lipinski, R. J.; Hammond, P.; O'Leary-Moore, S. K.; Ament, J. J.; Pecevich, S. J.; Jiang, Y.; Budin, F.; Parnell, S. E.; Suttie, M.; Godin, E. A.; et al. Ethanol-Induced Face-Brain Dysmorphology Patterns Are Correlative and Exposure-Stage Dependent. PLoS One. 2012, 7, e43067. DOI: 10.1371/journal.pone.0043067.
  • Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; et al. Cancer-Derived Exosomal miR-25-3p Promotes Pre-Metastatic Niche Formation by Inducing Vascular Permeability and Angiogenesis. Nat. Commun. 2018, 9, 5395. DOI: 10.1038/s41467-018-07810-w.
  • Harwood, F. C.; Klein Geltink, R. I.; O'Hara, B. P.; Cardone, M.; Janke, L.; Finkelstein, D.; Entin, I.; Paul, L.; Houghton, P. J.; Grosveld, G. C. ETV7 is an Essential Component of a Rapamycin-Insensitive mTOR Complex in Cancer. Sci. Adv. 2018, 4, eaar3938. DOI: 10.1126/sciadv.aar3938.
  • Mondol, M. A. M.; Shin, H. J.; Islam, M. T. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity. Mar. Drugs. 2013, 11, 2846–2872. DOI: 10.3390/md11082846.
  • Burstein, H.; Curigliano, G.; Thürlimann, B.; Weber, W.; Poortmans, P.; Regan, M.; Senn, H.; Winer, E.; Gnant, M.; Aebi, S, Panelists of the St Gallen Consensus Conference. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer. Ann. Oncol. 2021, 32, 1216–1235. DOI: 10.1016/j.annonc.2021.06.023.
  • Yopi, Y.; Djohan, A. C.; Rahmani, N.; Jannah, A. M. Isolation and Characterization of Mannanase, Xylanase, and Cellulase from Marine Bacteria Bacillus sp. Asian J. Natural Prod. Biochem. 2017, 15, 15–20.
  • Murniasih, T. M. Antibacterial Activity and GC–MS Based Metabolite Profiles of Indonesian Marine Bacillus. Indonesian J. Pharm. 2022, 33, 475–483. DOI: 10.22146/ijp.3504.
  • Jambhulkar, H. P.; Shaikh, S. M. S.; Kumar, M. S. Fly Ash Toxicity, Emerging Issues and Possible Implications for Its Exploitation in Agriculture; Indian Scenario: A Review. Chemosphere. 2018, 213, 333–344. DOI: 10.1016/j.chemosphere.2018.09.045.
  • Cao, Y.; Jian, F.; Wang, J.; Yu, Y.; Song, W.; Yisimayi, A.; Wang, J.; An, R.; Chen, X.; Zhang, N.; et al. Imprinted SARS-CoV-2 Humoral Immunity Induces Convergent Omicron RBD Evolution. Nature. 2023, 614, 521–529. DOI: 10.1038/s41586-022-05644-7.
  • Patel, T.; Saraf, M. Biosynthesis of Phytohormones from Novel Rhizobacterial Isolates and Their in Vitro Plant Growth-Promoting Efficacy. J. Plant Interact. 2017, 12, 480–487. DOI: 10.1080/17429145.2017.1392625.
  • Rathod, N. B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J. M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants. 2023, 12, 1217. DOI: 10.3390/plants12061217.
  • Mondal, H.; Chandrasekaran, N.; Mukherjee, A.; Thomas, J. Antibacterial Activity of Bacillus licheniformis Isolated from Marine Sediments and Its Effect in Treating Aeromonas hydrophila Infection in Freshwater Prawn, Macrobrachium Rosenbergii. Aquacul. Int. 2023, 31, 1–23. DOI: 10.1007/s10499-023-01321-2.
  • Koilybayeva, M.; Shynykul, Z.; Ustenova, G.; Waleron, K.; Jońca, J.; Mustafina, K.; Amirkhanova, A.; Koloskova, Y.; Bayaliyeva, R.; Akhayeva, T.; et al. Gas Chromatography–Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus Spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules. 2023, 28, 7556. DOI: 10.3390/molecules28227556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.