Publication Cover
Journal of Environmental Science and Health, Part B
Pesticides, Food Contaminants, and Agricultural Wastes
Volume 59, 2024 - Issue 7
14
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effect of ph on migration patterns and degradation pathways of sulfamethazine in soil systems

, ORCID Icon, , , , & show all
Pages 425-436 | Received 15 Mar 2024, Accepted 25 May 2024, Published online: 07 Jun 2024

References

  • Fedorova, G.; Nebesky, V.; Randak, T.; Grabic, R. Simultaneous Determination of 32 Antibiotics in Aquaculture Products Using LC-MS/MS. Chem. Papers 2014, 68, 29–36. DOI: 10.2478/s11696-013-0428-3.
  • Grabicova, K.; Grabic, R.; Blaha, M.; Kumar, V.; Cerveny, D.; Fedorova, G.; Randak, T. Presence of Pharmaceuticals in Benthic Fauna Living in a Small Stream Affected by Effluent from a Municipal Sewage Treatment Plant. Water Res. 2015, 72, 145–153. DOI: 10.1016/j.watres.2014.09.018.
  • Johnson, A. C.; Keller, V.; Dumont, E.; Sumpter, J. P. Assessing the Concentrations and Risks of Toxicity from the Antibiotics Ciprofloxacin, Sulfamethoxazole, Trimethoprim and Erythromycin in European Rivers. Sci. Total Environ. 2015, 511, 747–755. DOI: 10.1016/j.scitotenv.2014.12.055.
  • Wen X-J; Qian L; Lv X-X; Sun J; Guo, J; Fei, ZH; Niu, CG. Photocatalytic Degradation of Sulfamethazine Using a Direct Z-Scheme AgI/Bi4V2O11 Photocatalyst: Mineralization Activity, Degradation Pathways and Promoted Charge Separation Mechanism. J Hazard Mater, 121508 2020, 385. DOI: 10.1016/j.jhazmat.2019.121508.
  • Koba, O.; Golovko, O.; Kodešová, R.; Fér, M.; Grabic, R. Antibiotics Degradation in Soil: A Case of Clindamycin, Trimethoprim, Sulfamethoxazole and Their Transformation Products. Environ. Pollut. 2017, 220, 1251–1263. DOI: 10.1016/j.envpol.2016.11.007.
  • Cui, J.; Fu, L.; Tang, B.; Bin, L. Y.; Li, P.; Huang, S. S.; Fu, F. L. Occurrence, Ecotoxicological Risks of Sulfonamides and Their Acetylated Metabolites in the Typical Wastewater Treatment Plants and Receiving Rivers at the Pearl River Delta. Sci. Total Environ. 2020, 709, 136192. DOI: 10.1016/j.scitotenv.2019.136192.
  • Yan, C.; Yang, Y.; Zhou, J. L.; Liu, M.; Nie, M. H.; Shi, H.; Gu, L. J. Antibiotics in the Surface Water of the Yangtze Estuary: Occurrence, Distribution and Risk Assessment. Environ. Pollut. 2013, 175, 22–29. DOI: 10.1016/j.envpol.2012.12.008.
  • Wu, M.-H.; Que, C.-J.; Xu, G.; Sun, Y. F.; Ma, J.; Xu, H.; Sun, R.; Tang, L. Occurrence, Fate and Interrelation of Selected Antibiotics in Sewage Treatment Plants and Their Receiving Surface Water. Ecotoxicol Environ Saf 2016, 132, 132–139. DOI: 10.1016/j.ecoenv.2016.06.006.
  • Kuhne, M.; Ihnen, D.; Moller, G.; Agthe, O. Stability of Tetracycline in Water and Liquid Manure. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2000, 47, 379–384.
  • Søeborg, T.; Ingerslev, F.; Halling-Sørensen, B. Chemical Stability of Chlortetracycline and Chlortetracycline Degradation Products and Epimers in Soil Interstitial Water. Chemosphere 2004, 57, 1515–1524. DOI: 10.1016/j.chemosphere.2004.09.020.
  • Dong, F. L.; Li, C.; He, G. L.; Chen, X. B.; Mao, X. W. Kinetics and Degradation Pathway of Sulfamethazine Chlorination in Pilot-Scale Water Distribution Systems. Chemical Engineering Journal 2017, 321, 521–532. DOI: 10.1016/j.cej.2017.03.130.
  • Wang, H.; Chu, Y.; Fang, C. Occurrence of Veterinary Antibiotics in Swine Manure from Large-Scale Feedlots in Zhejiang Province, China. Bull. Environ. Contam. Toxicol. 2017, 98, 472–477. DOI: 10.1007/s00128-017-2052-3.
  • Yang, C.-W.; Hsiao, W.-C.; Chang, B.-V. Biodegradation of Sulfonamide Antibiotics in Sludge. Chemosphere 2016, 150, 559–565. DOI: 10.1016/j.chemosphere.2016.02.064.
  • Li, S.; Shi, W. Z.; Liu, W.; Li, H. M.; Zhang, W.; Hu, J. R.; Ke, Y. C.; Sun, W. L.; Ni, J. R. A Duodecennial National Synthesis of Antibiotics in China’s Major Rivers and Seas (2005-2016). Sci. Total Environ. 2018, 615, 906–917. DOI: 10.1016/j.scitotenv.2017.09.328.
  • Leal, R. M. P.; Alleoni, L. R. F.; Tornisielo, V. L.; Regitano, J. B. Sorption of Fluoroquinolones and Sulfonamides in 13 Brazilian Soils. Chemosphere 2013, 92, 979–985. DOI: 10.1016/j.chemosphere.2013.03.018.
  • Maszkowska, J.; Białk-Bielińska, A.; Mioduszewska, K.; Wagil, M.; Kumirska, J.; Stepnowski, P. Sorption of Sulfisoxazole onto Soil-an Insight into Different Influencing Factors. Environ. Sci. Pollut. Res. 2015, 22, 12182–12189. DOI: 10.1007/s11356-015-4445-3.
  • Zhi, D.; Yang, D. X.; Zheng, Y. X.; Yang, Y.; He, Y. Z.; Luo, L.; Zhou, Y. Y. Current Progress in the Adsorption, Transport and Biodegradation of Antibiotics in Soil. J. Environ. Manage 2019, 251, 109598. DOI: 10.1016/j.jenvman.2019.109598.
  • Białk-Bielińska, A.; Maszkowska, J.; Mrozik, W.; Bielawska, A.; Kołodziejska, M.; Palavinskas, R.; Stepnowski, P.; Kumirska, J. Sulfadimethoxine and Sulfaguanidine: Their Sorption Potential on Natural Soils. Chemosphere 2012, 86, 1059–1065. DOI: 10.1016/j.chemosphere.2011.11.058.
  • Boxall, A. B. A.; Kolpin, D. W.; Halling-Sørensen, B.; Tolls, J. Are Veterinary Medicines Causing Environmental Risks?. Environ. Sci. Technol. 2003, 37, 286A–294A. DOI: 10.1021/es032519b.
  • Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Sorption and Desorption of Sulfadiazine in Soil and Soil-Manure Systems. Chemosphere 2008, 73, 1344–1350. DOI: 10.1016/j.chemosphere.2008.06.066.
  • Volmer, D. A.; Hui, J. P. Study of Erythromycin a Decomposition Products in Aqueous Solution by Solid-Phase Microextraction/Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass. Spectrom. 1998, 12, 123–129. DOI: 10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4.
  • Kümmerer, K. Antibiotics in the Aquatic environment - A review - Part I. Chemosphere 2009, 75, 417–434. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Hu, Z.; Xie, X.; Li, S.; Song, M. X.; Liang, G. W.; Zhao, J.; Wang, Z. W. Rational Construct CQDs/BiOCOOH/uCN Photocatalyst with Excellent Photocatalytic Performance for Degradation of Sulfathiazole. Chem. Engin. J. 2021, 404, 126541. DOI: 10.1016/j.cej.2020.126541.
  • García-Galán, M. ªJ.; Silvia Díaz-Cruz, M.; Barceló, D.; Barceló, D. Combining Chemical Analysis and Ecotoxicity to Determine Environmental Exposure and to Assess Risk from Sulfonamides. TrAC, Trends Anal. Chem. 2009, 28, 804–819. DOI: 10.1016/j.trac.2009.04.006.
  • Zhang, Y.; Hu, S. Q.; Zhang, H. C.; Shen, G. X.; Yuan, Z. J.; Zhang, W. Degradation Kinetics and Mechanism of Sulfadiazine and Sulfamethoxazole in an Agricultural Soil System with Manure Application. Sci. Total Environ. 2017, 607-608, 1348–1356. DOI: 10.1016/j.scitotenv.2017.07.083.
  • Guzzella, L.; Pozzoni, F.; Giuliano, G. Herbicide Contamination of Surficial Groundwater in Northern Italy. Environ. Pollut. 2006, 142, 344–353. DOI: 10.1016/j.envpol.2005.10.037.
  • Chen, W.; Song, L. R.; Gan, N. Q.; Li, L. Sorption, Degradation and Mobility of Microcystins in Chinese Agriculture Soils: Risk Assessment for Groundwater Protection. Environ. Pollut. 2006, 144, 752–758. DOI: 10.1016/j.envpol.2006.02.023.
  • Voutsas, E.; Vavva, C.; Magoulas, K.; Tassios, D. Estimation of the Volatilization of Organic Compounds from Soil Surfaces. Chemosphere 2005, 58, 751–758. DOI: 10.1016/j.chemosphere.2004.09.057.
  • Srinivasan, P.; Sarmah, A. K.; Manley-Harris, M. Co-Contaminants and Factors Affecting the Sorption Behaviour of Two Sulfonamides in Pasture Soils. Environ. Pollut. 2013, 180, 165–172. DOI: 10.1016/j.envpol.2013.05.022.
  • Martínez-Hernández, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/Desorption of Non-Hydrophobic and Ionisable Pharmaceutical and Personal Care Products from Reclaimed Water onto/from a Natural Sediment. Sci. Total Environ. 2015, 505, 1232–1233. DOI: 10.1016/j.scitotenv.2014.10.104.
  • Thiele-Bruhn, S.; Seibicke, T.; Schulten, H. R.; Leinweber, P. Sorption of Sulfonamide Pharmaceutical Antibiotics on Whole Soils and Particle-Size Fractions. J. Environ. Qual. 2004, 33, 1331–1342. DOI: 10.2134/jeq2004.1331.
  • Gao, J.; Pedersen, J. A. Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals. Environ. Sci. Technol. 2005, 39, 9509–9516. DOI: 10.1021/es050644c.
  • Martínez-Hernández, V.; Meffe, R.; Herrera, S.; Arranz, E.; de Bustamante, I. Sorption/Desorption of Non-Hydrophobic and Ionisable Pharmaceutical and Personal Care Products from Reclaimed Water onto/from a Natural Sediment. Sci. Total Environ. 2014, 472, 273–281. DOI: 10.1016/j.scitotenv.2013.11.036.
  • de la Casa-Resino, I.; Empl, M. T.; Villa, S.; Kolar, B.; Fabrega, J.; Lillicrap, A. D.; Karamanlis, X. N.; Carapeto-García, R. Environmental Risk Assessment of Veterinary Medicinal Products Intended for Use in Aquaculture in Europe: The Need for Developing a Harmonised Approach. Environ. Sci. Eur. 2021, 33, 84. DOI: 10.1186/s12302-021-00509-8.
  • Sanli, N.; Sanli, S.; Ozkan G; Denizli, A. Determination of pKa Values of Some Sulfonamides by LC and LC-PDA Methods in Acetonitrile-Water Binary Mixtures. J. Braz. Chem. Soc. 2010, 21, 1952–1960.
  • Blackwell, P. A.; Kay, P.; Ashauer, R.; Boxall, A. B. A. Effects of Agricultural Conditions on the Leaching Behaviour of Veterinary Antibiotics in Soils. Chemosphere 2009, 75, 13–19. DOI: 10.1016/j.chemosphere.2008.11.070.
  • Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Petrovic, M.; Barceló, D. Hospital Effluent: Investigation of the Concentrations and Distribution of Pharmaceuticals and Environmental Risk Assessment. Sci. Total Environ. 2012, 430, 109–118. DOI: 10.1016/j.scitotenv.2012.04.055.
  • Gao, Y.-Q.; Gao, N.-Y.; Deng, Y.; Yang, Y. Q.; Ma, Y. Ultraviolet (UV) Light-Activated Persulfate Oxidation of Sulfamethazine in Water. Chem. Engin. J. 2012, 195-196, 248–253. DOI: 10.1016/j.cej.2012.04.084.
  • Jesus, Garcia.; Galan, M.; Silvia, Diaz.; Cruz, M.; Barcelo, D. Identification and Determination of Metabolites and Degradation Products of Sulfonamide Antibiotics. TrAC, Trends Anal. Chem. 2008, 27, 1008–1022. DOI: 10.1016/j.trac.2008.10.001.
  • Boreen, A. L.; Arnold, W. A.; Mcneill, K. Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups. Environ. Sci. Technol. 2004, 38, 3933–3940. DOI: 10.1021/es0353053.
  • Mansour D; Fourcade, F.; Huguet, S.; Soutrel, I.; Bellakhal, N.; Dachraoui, M.; Hauchard, D.; Amrane, A. Improvement of the Activated Sludge Treatment by Its Combination with Electro Fenton for the Mineralization of Sulfamethazine. Inter. BiodeteriorationI Biodegradation 2014, 88, 29–36.
  • El-Ghenymy, A.; Garrido, J. A.; Centellas, F.; Arias, C.; Cabot, P. L.; Rodríguez, R. M.; Brillas, E. Electro-Fenton and Photoelectro-Fenton Degradation of Sulfanilic Acid Using a Boron-Doped Diamond Anode and an Air Diffusion Cathode. J. Phys. Chem. A 2012, 116, 3404–3412. DOI: 10.1021/jp300442y.
  • Mahdi Ahmed, M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate Radical Anion Oxidation of Diclofenac and Sulfamethoxazole for Water Decontamination. Chem. Engin. J. 2012, 197, 440–447. DOI: 10.1016/j.cej.2012.05.040.
  • Werner, J. J.; Chintapalli, M.; Lundeen, R. A.; Wammer, K. H.; Arnold, W. A.; McNeill, K. Environmental Photochemistry of Tylosin: Efficient, Reversible Photoisomerization to a Less-Active Isomer, Followed by Photolysis. J. Agric. Food Chem. 2007, 55, 7062–7068. DOI: 10.1021/jf070101h.
  • Periša, M.; Babić, S.; Škorić, I.; Frömel, T.; Knepper, T. P. Photodegradation of Sulfonamides and Their N4-Acetylated Metabolites in Water by Simulated Sunlight Irradiation: Kinetics and Identification of Photoproducts. Environ. Sci. Pollut. Res. 2013, 20, 8934–8946. DOI: 10.1007/s11356-013-1836-1.
  • García-Galán, M. J.; Rodríguez-Rodríguez, C. E.; Vicent, T.; Caminal, G.; Díaz-Cruz, M. S.; Barceló, D. Biodegradation of Sulfamethazine by Trametes Versicolor: Removal from Sewage Sludge and Identification of Intermediate Products by UPLC-QqTOE-MS. Sci. Total Environ. 2012, 431, 436–436. DOI: 10.1016/j.scitotenv.2012.05.007.
  • Chang, C.; Fu, Y.; Hu, M.; Wang, C. Y.; Shan, G. Q.; Zhu, L. Y. Photodegradation of Bisphenol a by Highly Stable Palladium-Doped Mesoporous Graphite Carbon Nitride (Pd/mpg-C3N4) under Simulated Solar Light Irradiation. Appl. Catalysis B Environ. 2013, 142, 553–560.
  • Tentscher, P. R.; Eustis, S. N.; Mcneill, K.; Arey, J. S. Aqueous Oxidation of Sulfonamide Antibiotics: Aromatic Nucleophilic Substitution of an Aniline Radical Cation. Chem. A Europ. J. 2013, 19, 11216–11223.
  • García-Galán, M. ªJ.; Rodríguez-Rodríguez, C. E.; Vicent, T.; Caminal, G.; Díaz-Cruz, M. S.; Barceló, D. Biodegradation of Sulfamethazine by Trametes Versicolor Removal from Sewage Sludge and Identification of Intermediate Products by UPLC-QqTOF-MS. Sci. Total Environ. 2011, 409, 5505–5512. DOI: 10.1016/j.scitotenv.2011.08.022.
  • Boreen, A. L.; Arnold, W. A.; Mcneill, K. Triplet-Sensitized Photodegradation of Sulfa Drugs Containing Six-Membered Heterocyclic Groups: Identification of an SO2 Extrusion Photoproduct. Environ. Sci. Technol. 2005, 39, 3630–3638. DOI: 10.1021/es048331p.
  • Wan, Z.; Hu, J.; Wang, J. Removal of Sulfamethazine Antibiotics Using Ce-Fe-Graphene Nanocomposite as Catalyst by Fenton-like Process. J. Environ Manage 2016, 182, 284–291. DOI: 10.1016/j.jenvman.2016.07.088.
  • Neafsey, K.; Zeng, X.; Lemley, A. T. Degradation of Sulfonamides in Aqueous Solution by Membrane Anodic Fenton Treatment. J. Agric. Food Chem. 2010, 58, 1068–1076. DOI: 10.1021/jf904066a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.