1,026
Views
180
CrossRef citations to date
0
Altmetric
Research Article

Carbonyl Reductases and Pluripotent Hydroxysteroid Dehydrogenases of the Short-chain Dehydrogenase/reductase Superfamily

&
Pages 87-144 | Published online: 09 Oct 2008

REFERENCES

  • Abalain J. H., Di Stefano S., Abalain-Colloc M. L., Floch H. H. Cloning, sequencing and expression of Pseudomonas testosteroni gene encoding 3alpha-hydroxysteroid dehydrogenase. J. Steroid Biochem. Mol. Biol. 1995; 55: 233–238
  • Adams J. D., LaVoie E. J., Hoffmann D. On the pharmacokinetics of tobacco-specific N-nitrosamines in Fischer rats. Carcinogenesis 1985a; 6: 509–511
  • Adams J. D., Lavoie E. J., O'Mara-Adams K. J., Hoffmann D., Carey K. D., Marshall M. V. Pharmacokinetics of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in laboratory animals. Cancer Lett. 1985b; 28: 195–201
  • Agarwal A. K., Tusie-Luna M. T., Monder C., White P. C. Expression of 11beta-hydroxysteroid dehydrogenase using recombinant vaccinia virus. Mol. Endocrinol. 1990; 4: 1827–1832
  • Ahmed N. K., Felsted R. L., Bachur N. R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 1978; 27: 2713–2719
  • Ahmed N. K., Felsted R. L., Bachur N. R. Comparison and characterization of mammalian xenobiotic ketone reductases. J. Pharmacol. Exp. Ther. 1979; 209: 12–19
  • Ahmed N. K., Felsted R. L., Bachur N. R. Daunorubicin reduction mediated by aldehyde and ketone reductases. Xenobiotica 1981; 11: 131–136
  • Ahrendt S. A., Chow J. T., Yang S. C., Wu L., Zhang M. J., Jen J., Sidransky D. Alcohol consumption and cigarette smoking increase the frequency of p53 mutations in non-small cell lung cancer. Cancer Res. 2000; 60: 3155–3159
  • Alberts P., Engblom L., Edling N., Forsgren M., Klingstrom G., Larsson C., Ronquist-Nii Y., Ohman B., Abrahmsen L. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 2002; 45: 1528–1532
  • Aoki H., Okada T., Mizutani T., Numata Y., Minegishi T., Miyamoto K. Identification of two closely related genes, inducible and noninducible carbonyl reductases in the rat ovary. Biochem. Biophys. Res. Commun. 1997; 230: 518–523
  • Apweiler R., Attwood T. K., Bairoch A., Bateman A., Birney E., Biswas M., Bucher P., Cerutti L., Corpet F., Croning M. D., Durbin R., Falquet L., Fleischmann W., Gouzy J., Hermjakob H., Hulo N., Jonassen I., Kahn D., Kanapin A., Karavidopoulou Y., Lopez R., Marx B., Mulder N. J., Oinn T. M., Pagni M., Servant F., Sigrist C. J., Zdobnov E. M. InterPro–an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 2000; 16: 1145–1150
  • Arda B., Aydemir S., Yamazhan T., Hassan A., Tunger A., Serter D. Comamonas testosteroni meningitis in a patient with recurrent cholesteatoma. Apmis 2003; 111: 474–476
  • Atalla A., Breyer-Pfaff U., Maser E. Purification and characterization of oxidoreductases-catalyzing carbonyl reduction of the tobacco-specific nitrosamine 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in human liver cytosol. Xenobiotica 2000; 30: 755–769
  • Atalla A., Maser E. Carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in cytosol of mouse liver and lung. Toxicology 1999; 139: 155–166
  • Auerbach G., Herrmann A., Gutlich M., Fischer M., Jacob U., Bacher A., Huber R. The 1.25 A crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters. Embo. J. 1997; 16: 7219–7230
  • Aukrust L. E., Norum K. R., Skalhegg B. A. Affinity chromatography of 3alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. Use of N, N-dimethylformamide to prevent hydrophobic interactions between the enzyme and the ligand. Biochim. Biophys. Acta 1976; 438: 13–22
  • Ax W., Soldan M., Koch L., Maser E. Development of daunorubicin resistance in tumour cells by induction of carbonyl reduction. Biochem. Pharmacol. 2000; 59: 293–300
  • Bachur N. R. Cytoplasmic aldo-keto reductases: A class of drug metabolizing enzymes. Science 1976; 193: 595–597
  • Backlund M. G., Mann J. R., Holla V. R., Buchanan F. G., Tai H. H., Musiek E. S., Milne G. L., Katkuri S., DuBois R. N. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J. Biol. Chem. 2005; 280: 3217–3223
  • Bairoch A., Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000; 28: 45–48
  • Baker D., Agard D. A. Kinetics versus thermodynamics in protein folding. Biochemistry 1994; 33: 7505–7509
  • Belai I., Darvas B., Bauer K., Tag El-Din M. H. Effects of anti-ecdysteroid azaloe analogues of metyrapone on the larval development of the fleshfly, Neobellieria bullata. Pestic. Sci. 1995; 44: 225–232
  • Benach J., Atrian S., Gonzalez-Duarte R., Ladenstein R. The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution. J. Mol. Biol. 1998; 282: 383–399
  • Benach J., Atrian S., Gonzalez-Duarte R., Ladenstein R. The catalytic reaction and inhibition mechanism of Drosophila alcohol dehydrogenase: Observation of an enzyme-bound NAD-ketone adduct at 1.4 A resolution by X-ray crystallography. J. Mol. Biol. 1999; 289: 335–355
  • Beran M., Andersson B., Eksborg S., Ehrsson H. Comparative studies on the in vitro killing of human normal and leukemic clonogenic cells (CFUc) by daunorubicin, daunorubicinol, and daunorubicin-DNA complex. Cancer Chemother. Pharmacol. 1979; 2: 19–24
  • Boeijinga P. H., Galvan M., Baron B. M., Dudley M. W., Siegel B. W., Slone A. L. Characterization of the novel 5-HT3 antagonists MDL 73147EF (dolasetron mesilate) and MDL 74156 in NG108-15 neuroblastoma x glioma cells. Eur. J. Pharmacol. 1992; 219: 9–13
  • Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J. Biol. Chem. 1989; 264: 9547–9551
  • Bohren K. M., von Wartburg J. P., Wermuth B. Kinetics of carbonyl reductase from human brain. Biochem. J. 1987; 244: 165–171
  • Bohren K. M., Wermuth B., Harrison D., Ringe D., Petsko G. A., Gabbay K. H. Expression, crystallization and preliminary crystallographic analysis of human carbonyl reductase. J. Mol. Biol. 1994; 244: 659–664
  • Botella J. A., Ulschmid J. K., Gruenewald C., Moehle C., Kretzschmar D., Becker K., Schneuwly S. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration. Curr. Biol. 2004; 14: 782–786
  • Breyer-Pfaff U., Martin H. J., Ernst M., Maser E. Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver. Drug Metab. Dispos. 2004; 32: 915–922
  • Breyer-Pfaff U., Nill K. Stereoselective high-affinity reduction of ketonic nortriptyline metabolites and of ketotifen by aldo-keto reductases from human liver. Adv. Exp. Med. Biol. 1999; 463: 473–480
  • Breyer-Pfaff U., Nill K. High-affinity stereoselective reduction of the enantiomers of ketotifen and of ketonic nortriptyline metabolites by aldo-keto reductases from human liver. Biochem. Pharmacol. 2000; 59: 249–260
  • Breyer-Pfaff U., Nill K. Carbonyl reduction of naltrexone and dolasetron by oxidoreductases isolated from human liver cytosol. J. Pharm. Pharmacol. 2004; 56: 1601–1606
  • Brunmark A., Cadenas E., Segura-Aguilar J., Lind C., Ernster L. DT-diaphorase-catalyzed two-electron reduction of various p-benzoquinone- and 1,4-naphthoquinone epoxides. Free Radic. Biol. Med. 1988; 5: 133–143
  • Buchanan E. E., Gibbons N. E. Bergey's Manual of Determinative Bacteriology. Williams and Wilkins, Baltimore, MD 1974
  • Buffinton G. D., Ollinger K., Brunmark A., Cadena E. DT-diaphorase-catalysed reduction of 1,4-naphthoquinone derivatives and glutathionyl-quinone conjugates. Effect of substituents on autoxidation rates. Biochem. J. 1989; 257: 561–571
  • Cagen L. M., Zusman R. M., Pisano J. J. Formation of 1a, 1b dihomoprostaglandin E2 by rabbit renal intersititial cell cultures. Prostaglandins 1979; 18: 617–621
  • Caldwell J. The biochemical pharmacology of fenofibrate. Cardiology. 1989; 76(Suppl 1)33–41; discussion 41–44
  • Carmella S. G., Akerkar S. A., Richie J. P., Jr., Hecht S. S. Intraindividual and interindividual differences in metabolites of the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in smokers' urine. Cancer Epidemiol. Biomarkers Prev. 1995; 4: 635–642
  • Carmella S. G., Borukhova A., Akerkar S. A., Hecht S. S. Analysis of human urine for pyridine-N-oxide metabolites of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco-specific lung carcinogen. Cancer Epidemiol. Biomarkers Prev. 1997; 6: 113–120
  • Chang D. G., Tai H. H. Prostaglandin 9-ketoreductase/type II 15-hydroxyprostaglandin dehydrogenase is not a prostaglandin specific enzyme. Biochem. Biophys. Res. Commun. 1981; 101: 898–904
  • Chen S., Wu K., Knox R. Structure-function studies of DT-diaphorase (NQO1) and NRH: Quinone oxidoreductase (NQO2). Free Radic. Biol. Med. 2000; 29: 276–284
  • Coenye T., Goris J., Spilker T., Vandamme P., LiPuma J. J. Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J. Clin. Microbiol. 2002; 40: 2062–2069
  • Cooper G. R., Staples E. D., Iczkowski K. A., Clancy C. J. Comamonas (Pseudomonas) testosteroni endocarditis. Cardiovasc. Pathol. 2005; 14: 145–149
  • Cromlish J. A., Yoshimoto C. K., Flynn T. G. Purification and characterization of four NADPH-dependent aldehyde reductases from pig brain. J. Neurochem. 1985; 44: 1477–1484
  • Darvas B., Belai I., Fonagy A., Kulcsar P., Tag El-Din M. H. Lethal disturbances in larval development of Neobellieria bullata caused by metyrapone derivates. Pestic. Sci. 1991; 32: 133–139
  • Dawson T. M., Dawson V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003; 302: 819–822
  • Dayton H. E., Inturrisi C. E. The urinary excretion profiles of naltrexone in man, monkey, rabbit, and rat. Drug Metab. Dispos. 1976; 4: 474–478
  • Dessypris E. N., Brenner D. E., Hande K. R. Toxicity of doxorubicin metabolites to human marrow erythroid and myeloid progenitors in vitro. Cancer Treat. Rep. 1986; 70: 487–490
  • Diederich S., Hanke B., Burkhardt P., Muller M., Schoneshofer M., Bahr V., Oelkers W. Metabolism of synthetic corticosteroids by 11beta-hydroxysteroid-dehydrogenases in man. Steroids 1998; 63: 271–277
  • Diederich S., Hanke B., Oelkers W., Bahr V. Metabolism of dexamethasone in the human kidney: Nicotinamide adenine dinucleotide-dependent 11beta-reduction. J. Clin. Endocrinol. Metab. 1997; 82: 1598–1602
  • Doorn J. A., Maser E., Blum A., Claffey D. J., Petersen D. R. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal. Biochemistry 2004; 43: 13106–13114
  • Duax W. L., Ghosh D., Pletnev V. Steroid dehydrogenase structures, mechanism of action, and disease. Vitam. Horm. 2000; 58: 121–148
  • Ellis E. M. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 2002; 216: 123–131
  • Ellis E. M., Hayes J. D. Substrate specificity of an aflatoxin-metabolizing aldehyde reductase. Biochem. J. 1995; 312(Pt 2)535–541
  • Ensor C. M., Tai H. H. Site-directed mutagenesis of the conserved tyrosine 151 of human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase yields a catalytically inactive enzyme. Biochem. Biophys. Res. Commun. 1991; 176: 840–845
  • Espey L. L., Yoshioka S., Russell D., Ujioka T., Vladu B., Skelsey M., Fujii S., Okamura H., Richards J. S. Characterization of ovarian carbonyl reductase gene expression during ovulation in the gonadotropin-primed immature rat. Biol. Reprod. 2000; 62: 390–397
  • Esterbauer H., Cheeseman K. H., Dianzani M. U., Poli G., Slater T. F. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem. J. 1982; 208: 129–140
  • Faber K. Biotransformations in Organic Chemistry. 2nd. Springer-Verlag, Berlin 1998
  • Felsted R. L., Bachur N. R. Mammalian carbonyl reductases. Drug Metab. Rev. 1980; 11: 1–60
  • Felsted R. L., Bachur N. R. Human liver daunorubicin reductases. Prog. Clin. Biol. Res. 1982; 114: 291–305
  • Floch H. H., Abalain J. H., Di Stefano S., Carre J. L., Abalain-Colloc M. L. Cloning of genes coding for 3-alpha-hydroxysteroid dehydrogenase and for (3–17)-beta-hydroxysteroid dehydrogenase from Pseudomonas testosteroni. C. R. Seances Soc. Biol. Fil. 1995; 189: 705–712
  • Flynn T. G., Green N. C. The aldo-keto reductases: An overview. Adv. Exp. Med. Biol. 1993; 328: 251–257
  • Ford G., Ellis E. M. Three aldo-keto reductases of the yeast Saccharomyces cerevisiae. Chem. Biol. Interact. 2001; 130–132: 685–698
  • Ford G., Ellis E. M. Characterization of Ypr1p from Saccharomyces cerevisiae as a 2-methylbutyraldehyde reductase. Yeast 2002; 19: 1087–1096
  • Forrest G. L., Akman S., Krutzik S., Paxton R. J., Sparkes R. S., Doroshow J., Felsted R. L., Glover C. J., Mohandas T., Bachur N. R. Induction of a human carbonyl reductase gene located on chromosome 21. Biochim. Biophys. Acta 1990; 1048: 149–155
  • Forrest G. L., Gonzalez B. Carbonyl reductase. Chem. Biol. Interact. 2000; 129: 21–40
  • Fujii J., Iuchi Y., Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod. Biol. Endocrinol. 2005; 3: 43
  • Gersl V., Mazurova Y., Bajgar J., Melka M., Hrdina R., Palicka V. Lack of cardiotoxicity of a new antineoplastic agent, a synthetic derivative of indenoisochinoline: Comparison with daunorubicin in rabbits. Arch. Toxicol. 1996; 70: 645–651
  • Gessner T., Vaughan L. A., Beehler B. C., Bartels C. J., Baker R. M. Elevated pentose cycle and glucuronyltransferase in daunorubicin-resistant P388 cells. Cancer Res. 1990; 50: 3921–3927
  • Ghosh D., Erman M., Pangborn W., Duax W. L., Baker M. E. Inhibition of Streptomyces hydrogenans 3alpha,20beta-hydroxysteroid dehydrogenase by licorice-derived compounds and crystallization of an enzyme-cofactor-inhibitor complex. J. Steroid. Biochem. Mol. Biol. 1992; 42: 849–853
  • Ghosh D., Erman M., Pangborn W., Duax W. L., Nakajin S., Ohno S., Shinoda M. Crystallization and preliminary X-ray diffraction studies of a mammalian steroid dehydrogenase. J. Steroid. Biochem. Mol. Biol. 1993; 46: 103–104
  • Ghosh D., Erman M., Wawrzak Z., Duax W. L., Pangborn W. Mechanism of inhibition of 3 alpha, 20 beta-hydroxysteroid dehydrogenase by a licorice-derived steroidal inhibitor. Structure 1994a; 2: 973–980
  • Ghosh D., Pletnev V. Z., Zhu D. W., Wawrzak Z., Duax W. L., Pangborn W., Labrie F., Lin S. X. Structure of human estrogenic 17beta-hydroxysteroid dehydrogenase at 2.20 A resolution. Structure 1995; 3: 503–513
  • Ghosh D., Sawicki M., Pletnev V., Erman M., Ohno S., Nakajin S., Duax W. L. Porcine carbonyl reductase. Structural basis for a functional monomer in short chain dehydrogenases/reductases. J. Biol. Chem. 2001; 276: 18457–18463
  • Ghosh D., Wawrzak Z., Weeks C. M., Duax W. L., Erman M. The refined three-dimensional structure of 3alpha,20beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure 1994b; 2: 629–640
  • Ghosh D., Weeks C. M., Grochulski P., Duax W. L., Erman M., Rimsay R. L., Orr J. C. Three-dimensional structure of holo 3alpha,20beta-hydroxysteroid dehydrogenase: A member of a short-chain dehydrogenase family. Proc. Natl. Acad. Sci. USA 1991; 88: 10064–10068
  • Gonzalez B., Sapra A., Rivera H., Kapla n W. D., Yam B., Forrest G. L. Cloning and expression of the cDNA encoding rabbit liver carbonyl reductase. Gene. 1995; 154: 297–298
  • Grimm C., Maser E., Möbus E., Klebe G., Reuter K., Ficner R. The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J. Biol. Chem. 2000; 275: 41333–41339
  • Guan G., Tanaka M., Todo T., Young G., Yoshikuni M., Nagahama Y. Cloning and expression of two carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase cDNAs in ovarian follicles of rainbow trout (Oncorhynchus mykiss). Biochem. Biophys. Res. Commun. 1999; 255: 123–128
  • Habrych M., Rodriguez S., Stewart J. D. Purification and identification of an Escherichia coli beta-keto ester reductase as 2,5-diketo-D-gluconate reductase YqhE. Biotechnol. Prog. 2002; 18: 257–261
  • Hara A., Hasebe K., Hayashibara M., Matsuura K., Nakayama T., Sawada H. Dihydrodiol dehydrogenases in guinea pig liver. Biochem. Pharmacol. 1986a; 35: 4005–4012
  • Hara A., Nakayama T., Deyashiki Y., Kariya K., Sawada H. Carbonyl reductase of dog liver: Purification, properties, and kinetic mechanism. Arch. Biochem. Biophys. 1986b; 244: 238–247
  • Hara A., Oritani H., Deyashiki Y., Nakayama T., Sawada H. Activation of carbonyl reductase from pig lung by fatty acids. Arch. Biochem. Biophys. 1992; 292: 548–554
  • Hara A., Usui S., Hayashibara M., Horiuchi T., Nakayama T., Sawada H. Microsomal carbonyl reductase in rat liver. Sex difference, hormonal regulation, and characterization. Prog. Clin. Biol. Res. 1987; 232: 401–414
  • Hara A., Yamamoto H., Deyashiki Y., Nakayama T., Oritani H., Sawada H. Aldehyde dismutation catalyzed by pulmonary carbonyl reductase: Kinetic studies of chloral hydrate metabolism to trichloroacetic acid and trichloroethanol. Biochim. Biophys. Acta. 1991; 1075: 61–67
  • Hartl F. U., Pfanner N., Nicholson D. W., Neupert W. Mitochondrial protein import. Biochim. Biophys. Acta. 1989; 988: 1–45
  • Hayashi H., Fujii Y., Watanabe K., Urade Y., Hayaishi O. Enzymatic conversion of prostaglandin H2 to prostaglandin F2 alpha by aldehyde reductase from human liver. Prog. Clin. Biol. Res. 1989; 290: 365–379
  • Hecht S. S. Metabolic activation and detoxification of tobacco-specific nitrosamines–a model for cancer prevention strategies. Drug Metab. Rev. 1994; 26: 373–390
  • Hecht S. S. Recent studies on mechanisms of bioactivation and detoxification of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific lung carcinogen. Crit. Rev. Toxicol. 1996; 26: 163–181
  • Hecht S. S. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem. Res. Toxicol. 1998; 11: 559–603
  • Hecht S. S., Carmella S. G., Murphy S. E., Akerkar S., Brunnemann K. D., Hoffmann D. A tobacco-specific lung carcinogen in the urine of men exposed to cigarette smoke. N. Engl. J. Med. 1993; 329: 1543–1546
  • Higaki Y., Usami N., Shintani S., Ishikura S., El-Kabbani O., Hara A. Selective and potent inhibitors of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone. Chem. Biol. Interact. 2003; 143–144: 503–513
  • Higuchi T., Imamura Y., Otagiri M. Kinetic studies on the reduction of acetohexamide catalyzed by carbonyl reductase from rabbit kidney. Biochim. Biophys. Acta 1993; 1158: 23–28
  • Hoffmann D., Lavoie E. J., Hecht S. S. Nicotine: A precursor for carcinogens. Cancer Lett. 1985; 26: 67–75
  • Hoffmann F., Sotriffer C., Evers A., Xiong G., Maser E. Understanding oligomerization in 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: An in silico approach and evidence for an active protein. J. Biotechnol. 2007, in press
  • Iino T., Tabata M., Takikawa S., Sawada H., Shintaku H., Ishikura S., Hara A. Tetrahydrobiopterin is synthesized from 6-pyruvoyl-tetrahydropterin by the human aldo-keto reductase AKR1 family members. Arch Biochem Biophys 2003; 416: 180–187
  • Iino T., Takikawa S. I., Yamamoto T., Sawada H. The enzyme that synthesizes tetrahydrobiopterin from 6-pyruvoyl-tetrahydropterin in the lemon mutant silkworm consists of two carbonyl reductases. Arch. Biochem. Biophys. 2000; 373: 442–446
  • Ikeda M., Hattori H., Ohmori S. Properties of NADPH-dependent carbonyl reductases in rat liver cytosol. Biochem. Pharmacol. 1984; 33: 3957–3961
  • Imamura Y., Higuchi T., Nozaki Y., Sugino E., Hibino S., Otagiri M. Purification and properties of carbonyl reductase from rabbit kidney. Arch. Biochem. Biophys. 1993; 300: 570–576
  • Imamura Y., Migita T., Anraku M., Otagiri M. Inhibition of rabbit heart carbonyl reductase by fatty acids. Biol. Pharm. Bull. 1999a; 22: 731–733
  • Imamura Y., Migita T., Otagiri M., Choshi T. , Hibino S. Purification and catalytic properties of a tetrameric carbonyl reductase from rabbit heart. J. Biochem. (Tokyo) 1999b; 125: 41–47
  • Inazu N., Fujii T. Pre- and post-ovulatory changes in carbonyl reductase in ovarian follicles and corpora lutea in rats. Res. Commun. Mol. Pathol. Pharmacol. 1997; 98: 325–334
  • Inazu N., Inaba N., Satoh T., Fujii T. Human chorionic gonadotropin causes an estrogen-mediated induction of rat ovarian carbonyl reductase. Life Sci. 1992a; 51: 817–822
  • Inazu N., Ruepp B., Wirth H., Wermuth B. Carbonyl reductase from human testis: Purification and comparison with carbonyl reductase from human brain and rat testis. Biochim. Biophys. Acta 1992b; 1116: 50–56
  • Inazu N., Satoh T. Activation by human chorionic gonadotropin of ovarian carbonyl reductase in mature rats exposed in vivo to estrogens. Biochem. Pharmacol. 1994; 47: 1489–1496
  • Iwata N., Inazu N., Satoh T. The purification and properties of NADPH-dependent carbonyl reductases from rat ovary. J. Biochem. (Tokyo) 1989; 105: 556–564
  • Iwata N., Inazu N., Satoh T. Immunological and enzymological localization of carbonyl reductase in ovary and liver of various species. J. Biochem. (Tokyo) 1990a; 107: 209–212
  • Iwata N., Inazu N., Takeo S., Satoh T. Carbonyl reductases from rat testis and vas deferens. Purification, properties and localization. Eur. J. Biochem. 1990b; 193: 75–81
  • Jarabak J., Luncsford A., Berkowitz D. Substrate specificity of three prostaglandin dehydrogenases. Prostaglandins 1983; 26: 849–868
  • Jez J. M., Bennett M. J., Schlegel B. P., Lewis M., Penning T. M. Comparative anatomy of the aldo-keto reductase superfamily. Biochem. J. 1997a; 326(Pt 3)625–636
  • Jez J. M., Flynn T. G., Penning T. M. A new nomenclature for the aldo-keto reductase superfamily. Biochem. Pharmacol. 1997b; 54: 639–647
  • Joo M., Kang Y. K., Lee H. K., Lee H. S., Yum H. K., Bang S. W., Cho H. J. Intrapulmonary and gastric teratoma: Report of two cases. J. Korean Med. Sci. 1999; 14: 330–334
  • Jornvall H., Hoog J. O., Persson B. SDR and MDR: Completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett. 1999; 445: 261–264
  • Jornvall H., Persson M., Jeffery J. Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc. Natl. Acad. Sci. USA 1981; 78: 4226–4230
  • Jornvall H., Persson B., Krook M., Atrian S., Gonzalez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995; 34: 6003–6013
  • Kallberg Y., Oppermann U., Jörnvall H., Persson B. Short-chain dehydrogenase/reductase (SDR) relationships: A large family with eight clusters common to human, animal, and plant genomes. Protein Sci. 2002; 11: 636–641
  • Kallberg Y., Persson B. KIND-a non-redundant protein database. Bioinformatics 1999; 15: 260–261
  • Karplus K., Barrett C., Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14: 846–856
  • Karplus K., Karchin R., Shackelford G., Hughey R. Calibrating E-values for hidden Markov models using reverse-sequence null models. Bioinformatics 2005; 21: 4107–4115
  • Kita K., Fukura T., Nakase K. I., Okamoto K., Yanase H., Kataoka M., Shimizu S. Cloning, overexpression, and mutagenesis of the Sporobolomyces salmonicolor AKU4429 gene encoding a new aldehyde reductase, which catalyzes the stereoselective reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (S)-4-chloro-3-hydroxybutanoate. Appl. Environ. Microbiol. 1999; 65: 5207–5211
  • Klein J., Thomas H., Post K., Worner W., Oesch F. Dihydrodiol dehydrogenase activities of rabbit liver are associated with hydroxysteroid dehydrogenases and aldo-keto reductases. Eur. J. Biochem. 1992; 205: 1155–1162
  • Kotelevtsev Y., Holmes M. C., Burchell A., Houston P. M., Schmoll D., Jamieson P., Best R., Brown R., Edwards C. R., Seckl J. R., Mullins J. J. 11Beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA 1997; 94: 14924–14929
  • Krook M., Ghosh D., Duax W., Jornvall H. Three-dimensional model of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase and relationships to the NADP(+)-dependent enzyme (carbonyl reductase). FEBS Lett. 1993a; 322: 139–142
  • Krook M., Ghosh D., Stromberg R., Carlquist M., Jornvall H. Carboxyethyllysine in a protein: Native carbonyl reductase/NADP(+)-dependent prostaglandin dehydrogenase. Proc. Natl. Acad. Sci. USA 1993b; 90: 502–506
  • Krozowski Z. 11 Beta-hydroxysteroid dehydrogenase and the short-chain alcohol dehydrogenase (SCAD) superfamily. Mol. Cell. Endocrinol. 1992; 84: C25–31
  • Labrie F., Luu-The V., Lin S. X., Labrie C., Simard J., Breton R., Belanger A. The key role of 17beta-hydroxysteroid dehydrogenases in sex steroid biology. Steroids 1997; 62: 148–158
  • Lakhman S. S., Ghosh D., Blanco J. G. Functional significance of a natural allelic variant of human carbonyl reductase 3 (CBR3). Drug Metab. Dispos. 2005; 33: 254–257
  • Lee S. C., Levine L. Prostaglandin metabolism. I. Cytoplasmic reduced nicotinamide adenine dinucleotide phosphate-dependent and microsomal reduced nicotinamide adenine dinucleotide-dependent prostaglandin E 9-ketoreductase activities in monkey and pigeon tissues. J. Biol. Chem. 1974a; 249: 1369–1375
  • Lee S. C., Levine L. Purification and properties of chicken heart prostaglandin delta13-reductase. Biochem. Biophys. Res. Commun. 1974b; 61: 14–21
  • Li K. X., Obeyesekere V. R., Krozowski Z. S., Ferrari P. Oxoreductase and dehydrogenase activities of the human and rat 11beta-hydroxysteroid dehydrogenase type 2 enzyme. Endocrinology 1997; 138: 2948–2952
  • Lin D., Lee H. G., Liu Q., Perry G., Smith M. A., Sayre L. M. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 2005; 18: 1219–1231
  • Lind C., Cadenas E., Hochstein P., Ernster L. DT-Diaphorase: Purification, properties, and function. Methods Enzymol. 1990; 186: 287–301
  • Lind C., Hochstein P., Ernster L. DT-Diaphorase as a quinone reductase: A cellular control device against semiquinone and superoxide radical formation. Arch. Biochem. Biophys. 1982; 216: 178–185
  • Maser E. The purification and properties of a novel carbonyl reducing enzyme from mouse liver microsomes. Adv. Exp. Med. Biol. 1993; 328: 339–350
  • Maser E. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochem. Pharmacol. 1995; 49: 421–440
  • Maser E. Stress, hormonal changes, alcohol, food constituents and drugs: Factors that advance the incidence of tobacco smoke-related cancer?. Trends Pharmacol. Sci. 1997; 18: 270–275
  • Maser E. 11Beta-hydroxysteroid dehydrogenase responsible for carbonyl reduction of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)- 1-butanone in mouse lung microsomes. Cancer Res. 1998; 58: 2996–3003
  • Maser E. Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends Pharmacol. Sci. 2004; 25: 235–237
  • Maser E. Neuroprotective role for carbonyl reductase?. Biochem. Biophys. Res. Commun. 2006; 340: 1019–1022
  • Maser E., Bannenberg G. 11Beta-hydroxysteroid dehydrogenase mediates reductive metabolism of xenobiotic carbonyl compounds. Biochem. Pharmacol. 1994a; 47: 1805–1812
  • Maser E., Bannenberg G. The purification of 11beta-hydroxysteroid dehydrogenase from mouse liver microsomes. J. Steroid. Biochem. Mol. Biol. 1994b; 48: 257–263
  • Maser E., Friebertshauser J., Mangoura S. A. Ontogenic pattern of carbonyl reductase activity of 11beta-hydroxysteroid dehydrogenase in mouse liver and kidney. Xenobiotica 1994; 24: 109–117
  • Maser E., Friebertshauser J., Volker B. Purification, characterization and NNK carbonyl reductase activities of 11beta-hydroxysteroid dehydrogenase type 1 from human liver: Enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen. Chem. Biol. Interact. 2003; 143–144: 435–448
  • Maser E., Hoffmann J. G., Friebertshauser J., Netter K. J. High carbonyl reductase activity in adrenal gland and ovary emphasizes its role in carbonyl compound detoxication. Toxicology 1992; 74: 45–56
  • Maser E., Oppermann U. C. Molecular cloning and sequencing of mouse hepatic 11beta-hydroxysteroid dehydrogenase/carbonyl reductase. A member of the short chain dehydrogenase superfamily. Adv. Exp. Med. Biol. 1995; 372: 211–221
  • Maser E., Oppermann U. C. Role of type-1 11beta-hydroxysteroid dehydrogenase in detoxification processes. Eur. J. Biochem. 1997; 249: 365–369
  • Maser E., Richter E., Friebertshauser J. The identification of 11beta-hydroxysteroid dehydrogenase as carbonyl reductase of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Eur. J. Biochem. 1996; 238: 484–489
  • Maser E., Volker B., Friebertshauser J. 11Beta-hydroxysteroid dehydrogenase type 1 from human liver: dimerization and enzyme cooperativity support its postulated role as glucocorticoid reductase. Biochemistry 2002; 41: 2459–2465
  • Maser E., Wsol V., Martin H. J. 11Beta-hydroxysteroid dehydrogenase type 1: purification from human liver and characterization as carbonyl reductase of xenobiotics. Mol. Cell. Endocrinol. 2006; 248: 34–37
  • Masuzaki H., Paterson J., Shinyama H., Morton N. M., Mullins J. J., Seckl J. R., Flier J. S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001; 294: 2166–2170
  • Matsuda T., Harada T., Nakajima N., Itoh T., Nakamura K. Two classes of enzymes of opposite stereochemistry in an organism: One for fluorinated and another for nonfluorinated substrates. J. Org. Chem. 2000; 65: 157–163
  • Matsunaga T., Shintani S., Hara A. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab. Pharmacokinet. 2006; 21: 1–18
  • Matsuura K., Bunai Y., Ohya I., Hara A., Nakanishi M., Sawada H. Ultrastructural localization of carbonyl reductase in mouse lung. Histochem. J. 1994; 26: 311–316
  • Matsuura K., Hara A., Sawada H., Bunai Y., Ohya I. Localization of pulmonary carbonyl reductase in guinea pig and mouse: Enzyme histochemical and immunohistochemical studies. J. Histochem. Cytochem. 1990; 38: 217–223
  • Matsuura K., Naganeo F., Hara A., Nakayama T., Nakagawa M., Sawada H. Pulmonary carbonyl reductase: Metabolism of carbonyl products in lipid peroxidation. Prog. Clin. Biol. Res. 1989; 290: 335–349
  • Matsuura K., Nakayama T., Nakagawa M., Hara A., Sawada H. Kinetic mechanism of pulmonary carbonyl reductase. Biochem. J. 1988; 252: 17–22
  • McGrath T., Center M. S. Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein. Biochem. Biophys. Res. Commun. 1987; 145: 1171–1176
  • Meger M., Meger-Kossien I., Dietrich M., Tricker A. R., Scherer G., Adlkofer F. Metabolites of 4-(N-methylnitrosamino)-1-(3-pyridyl)-1-butanone in urine of smokers. Eur. J. Cancer Prev. 1996; 5(Suppl 1)121–124
  • Melka M. Oracin-Preclinical Summary Report of the Research Institute for Pharmacy and Biochemistry. Czech Republic, Prague 1993
  • Michel-Briand Y. Relationship between the structure of a steroid and the inducing effect on 3alpha-hydroxysteroid: NAD oxidoreductase of Pseudomonas testosteroni. Eur. J. Biochem. 1969; 10: 132–139
  • Michel-Briand Y., Roux J. Role of the composition of the culture medium in the delay of appearance of the 3alpha-hydroxysteroid enzyme: NAD-Oxidoreductase (EC I.I.I.50) of Pseudomonas testoteroni. (Catabolic repression phenomenon). Ann. Inst. Pasteur (Paris) 1969; 116: 448–473
  • Miko M., Krepelka J., Melka M. Effects of benfluron and its two metabolites on respiratory processes in P388 murine leukemia and Ehrlich ascites cells. Biochem. Pharmacol. 1991; 42(Suppl)S214–216
  • Miko M., Poturnajova M., Soucek R. Cytotoxicity and mode of action of the potential cytostatic drug oracin. Neoplasma 2002; 49: 167–171
  • Mobus E., Jahn M., Schmid R., Jahn D., Maser E. Testosterone-regulated expression of enzymes involved in steroid and aromatic hydrocarbon catabolism in Comamonas testosteroni. J. Bacteriol. 1997; 179: 5951–5955
  • Mobus E., Maser E. Molecular cloning, overexpression, and characterization of steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily. J. Biol. Chem. 1998; 273: 30888–30896
  • Monder C., Shackleton C. H. 11Beta-hydroxysteroid dehydrogenase: Fact or fancy?. Steroids 1984; 44: 383–417
  • Monder C., Stewart P. M., Lakshmi V., Valentino R., Burt D., Edwards C. R. Licorice inhibits corticosteroid 11beta-dehydrogenase of rat kidney and liver: In vivo and in vitro studies. Endocrinology 1989; 125: 1046–1053
  • Monder C., White P. C. 11Beta-hydroxysteroid dehydrogenase. Vitam. Horm. 1993; 47: 187–271
  • Monks T. J., Hanzlik R. P., Cohen G. M., Ross D., Graham D. G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992; 112: 2–16
  • Moore C. C., Mellon S. H., Murai J., Siiteri P. K., Miller W. L. Structure and function of the hepatic form of 11beta-hydroxysteroid dehydrogenase in the squirrel monkey, an animal model of glucocorticoid resistance. Endocrinology 1993; 133: 368–375
  • Morton N. M., Holmes M. C., Fievet C., Staels B., Tailleux A., Mullins J. J., Seckl J. R. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J. Biol. Chem. 2001; 276: 41293–41300
  • Nadkarni D. V., Sayre L. M. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal. Chem. Res. Toxicol. 1995; 8: 284–291
  • Nakajin S., Tamura F., Takase N., Toyoshima S. Carbonyl reductase activity exhibited by pig testicular 20beta-hydroxysteroid dehydrogenase. Biol. Pharm. Bull. 1997; 20: 1215–1218
  • Nakanishi M., Deyashiki Y., Nakayama T., Sato K., Hara A. Cloning and sequence analysis of a cDNA encoding tetrameric carbonyl reductase of pig lung. Biochem. Biophys. Res. Commun. 1993; 194: 1311–1316
  • Nakanishi M., Deyashiki Y., Ohshima K., Hara A. Cloning, expression and tissue distribution of mouse tetrameric carbonyl reductase. Identity with an adipocyte 27-kDa protein. Eur. J. Biochem. 1995; 228: 381–387
  • Nakayama T., Hara A., Sawada H. Purification and characterization of a novel pyrazole-sensitive carbonyl reductase in guinea pig lung. Arch. Biochem. Biophys. 1982; 217: 564–573
  • Nakayama T., Hara A., Yashiro K., Sawada H. Reductases for carbonyl compounds in human liver. Biochem. Pharmacol. 1985; 34: 107–117
  • Nakayama T., Yashiro K., Inoue Y., Matsuura K., Ichikawa H., Hara A., Sawada H. Characterization of pulmonary carbonyl reductase of mouse and guinea pig. Biochim. Biophys. Acta 1986; 882: 220–227
  • Nakayama T., Matsuura K., Nakagawa M., Hara A., Sawada H. Subcellular distribution and properties of carbonyl reductase in guinea pig lung. Arch. Biochem. Biophys. 1988; 264: 492–501
  • Neupert W., Hartl F. U., Craig E. A., Pfanner N. How do polypeptides cross the mitochondrial membranes?. Cell. 1990; 63: 447–450
  • O'Brien P. J. Molecular mechanisms of quinone cytotoxicity. Chem. Biol. Interact. 1991; 80: 1–41
  • Oh J. W., Lee H. B., Kim C. R., Yum M. K., Koh Y. J., Moon S. J., Kang J. O., Park I. K. Analysis of induced sputum to examine the effects of inhaled corticosteroid on airway inflammation in children with asthma. Ann. Allergy Asthma Immunol. 1999; 82: 491–496
  • Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem. Pharmacol. 1995; 50: 221–227
  • Ohno S., Nakajin S., Shinoda M. 20Beta-hydroxysteroid dehydrogenase of neonatal pig testis: 3Alpha/beta-hydroxysteroid dehydrogenase activities catalyzed by highly purified enzyme. J. Steroid. Biochem. Mol. Biol. 1991; 38: 787–794
  • Olson L. E., Bedja D., Alvey S. J., Cardounel A. J., Gabrielson K. L., Reeves R. H. Protection from doxorubicin-induced cardiac toxicity in mice with a null allele of carbonyl reductase 1. Cancer Res. 2003; 63: 6602–6606
  • Oppermann C. T., Netter K. J., Maser E. Carbonyl reduction by 3alpha-HSD from Comamonas testosteroni–new properties and its relationship to the SCAD family. Adv. Exp. Med. Biol. 1993; 328: 379–390
  • Oppermann U. C., Belai I., Maser E. Antibiotic resistance and enhanced insecticide catabolism as consequences of steroid induction in the gram-negative bacterium Comamonas testosteroni. J. Steroid. Biochem. Mol. Biol. 1996; 58: 217–223
  • Oppermann U. C., Maser E. Characterization of a 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonas testosteroni. Eur. J. Biochem. 1996; 241: 744–749
  • Oppermann U. C., Maser E. Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions. Toxicology 2000; 144: 71–81
  • Oppermann U. C., Maser E., Mangoura S. A., Netter K. J. Heterogeneity of carbonyl reduction in subcellular fractions and different organs in rodents. Biochem. Pharmacol. 1991; 42(Suppl)S189–195
  • Oppermann U. C., Nagel G., Belai I., Bueld J. E., Genti-Raimondi S., Koolman J., Netter K. J., Maser E. Carbonyl reduction of an anti-insect agent imidazole analogue of metyrapone in soil bacteria, invertebrate and vertebrate species. Chem. Biol. Interact. 1998; 114: 211–224
  • Oppermann U. C., Netter K. J., Maser E. Cloning and primary structure of murine 11 beta-hydroxysteroid dehydrogenase/microsomal carbonyl reductase. Eur. J. Biochem. 1995; 227: 202–208
  • Oritani H., Deyashiki Y., Nakayama T., Hara A., Sawada H., Matsuura K., Bunai Y., Ohya I. Purification and characterization of pig lung carbonyl reductase. Arch. Biochem. Biophys. 1992; 292: 539–547
  • Ota T., Suzuki Y., Nishikawa T., Otsuki T., Sugiyama T., Irie R., Wakamatsu A., Hayashi K., Sato H., Nagai K., Kimura K., Makita H., Sekine M., Obayashi M., Nishi T., Shibahara T., Tanaka T., Ishii S., Yamamoto J., Saito K., Kawai Y., Isono Y., Nakamura Y., Nagahari K., Murakami K., Yasuda T., Iwayanagi T., Wagatsuma M., Shiratori A., Sudo H., Hosoiri T., Kaku Y., Kodaira H., Kondo H., Sugawara M., Takahashi M., Kanda K., Yokoi T., Furuya T., Kikkawa E., Omura Y., Abe K., Kamihara K., Katsuta N., Sato K., Tanikawa M., Yamazaki M., Ninomiya K., Ishibashi T., Yamashita H., Murakawa K., Fujimori K., Tanai H., Kimata M., Watanabe M., Hiraoka S., Chiba Y., Ishida S., Ono Y., Takiguchi S., Watanabe S., Yosida M., Hotuta T., Kusano J., Kanehori K., Takahashi-Fujii A., Hara H., Tanase T. O., Nomura Y., Togiya S., Komai F., Hara R., Takeuchi K., Arita M., Imose N., Musashino K., Yuuki H., Oshima A., Sasaki N., Aotsuka S., Yoshikawa Y., Matsunawa H., Ichihara T., Shiohata N., Sano S., Moriya S., Momiyama H., Satoh N., Takami S., Terashima Y., Suzuki O., Nakagawa S., Senoh A., Mizoguchi H., Goto Y., Shimizu F., Wakebe H., Hishigaki H., Watanabe T., Sugiyama A., Takemoto M., Kawakami B., Watanabe K., Kumagai A., Itakura S., Fukuzumi Y., Fujimori Y., Komiyama M., Tashiro H., Tanigami A., Fujiwara T., Ono T., Yamada K., Fujii Y., Ozaki K., Hirao M., Ohmori Y., Kawabata A., Hikiji T., Kobatake N., Inagaki H., Ikema Y., Okamoto S., Okitani R., Kawakami T., Noguchi S., Itoh T., Shigeta K., Senba T., Matsumura K., Nakajima Y., Mizuno T., Morinaga M., Sasaki M., Togashi T., Oyama M., Hata H., Komatsu T., Mizushima-Sugano J., Satoh T., Shirai Y., Takahashi Y., Nakagawa K., Okumura K., Nagase T., Nomura N., Kikuchi H., Masuho Y., Yamashita R., Nakai K., Yada T., Ohara O., Isogai T., Sugano S. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 2004; 36: 40–45
  • Ozols R. F., Willson J. K., Weltz M. D., Grotzinger K. R., Myers C. E., Young R. C. Inhibition of human ovarian cancer colony formation by adriamycin and its major metabolites. Cancer Res. 1980; 40: 4109–4112
  • Pal L., Basu G. Novel protein structural motifs containing two-turn and longer 3(10)-helices. Protein Eng. 1999; 12: 811–814
  • Paolini M., Barillari J., Broccoli M., Pozzetti L., Perocco P., Cantelli-Forti G. Effect of liquorice and glycyrrhizin on rat liver carcinogen metabolizing enzymes. Cancer Lett. 1999; 145: 35–42
  • Park Y. S., Heizmann C. W., Wermuth B., Levine R. A., Steinerstauch P., Guzman J., Blau N. Human carbonyl and aldose reductases: New catalytic functions in tetrahydrobiopterin biosynthesis. Biochem. Biophys. Res. Commun. 1991; 175: 738–744
  • Penning T. M. Molecular endocrinology of hydroxysteroid dehydrogenases. Endocr. Rev. 1997; 18: 281–305
  • Penning T. M. AKR1B10: A new diagnostic marker of non-small cell lung carcinoma in smokers. Clin. Cancer Res. 2005; 11: 1687–1690
  • Penning T. M., Bennett M. J., Smith-Hoog S., Schlegel B. P., Jez J. M., Lewis M. Structure and function of 3 alpha-hydroxysteroid dehydrogenase. Steroids 1997; 62: 101–111
  • Penning T. M., Burczynski M. E., Hung C. F., McCoull K. D., Palackal N. T., Tsuruda L. S. Dihydrodiol dehydrogenases and polycyclic aromatic hydrocarbon activation: Generation of reactive and redox active o-quinones. Chem. Res. Toxicol. 1999; 12: 1–18
  • Penning T. M., Jin Y., Heredia V. V., Lewis M. Structure-function relationships in 3alpha-hydroxysteroid dehydrogenases: A comparison of the rat and human isoforms. J. Steroid. Biochem. Mol. Biol. 2003; 85: 247–255
  • Penning T. M., Mukharji I., Barrows S., Talalay P. Purification and properties of a 3 alpha-hydroxysteroid dehydrogenase of rat liver cytosol and its inhibition by anti-inflammatory drugs. Biochem. J. 1984; 222: 601–611
  • Penning T. M., Pawlowski J. E., Schlegel B. P., Jez J. M., Lin H. K., Hoog S. S., Bennett M. J., Lewis M. Mammalian 3alpha-hydroxysteroid dehydrogenases. Steroids 1996; 61: 508–523
  • Persson B., Kallberg Y., Oppermann U., Jornvall H. Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact. 2003; 143–144: 271–278
  • Persson B., Krook M., Jornvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 1991; 200: 537–543
  • Peters J., Minuth T., Kula M. R. A novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis: Purification and characterization. Enzyme Microb. Technol. 1993; 15: 950–958
  • Pfanner N., Hartl F. U., Neupert W. Import of proteins into mitochondria: a multi-step process. Eur. J. Biochem. 1988; 175: 205–212
  • Pfanner N., Ostermann J., Rassow J., Hartl F. U., Neupert W. Stress proteins and mitochondrial protein import. Antonie Van Leeuwenhoek. 1990a; 58: 191–193
  • Pfanner N., Rassow J., Guiard B., Sollner T., Hartl F. U., Neupert W. Energy requirements for unfolding and membrane translocation of precursor proteins during import into mitochondria. J. Biol. Chem. 1990b; 265: 16324–16329
  • Pietruszko R., Chen F. F. Aldehyde reductase from rat liver is a 3alpha-hydroxysteroid dehydrogenase. Biochem. Pharmacol. 1976; 25: 2721–2725
  • Propper D., Maser E. Carbonyl reduction of daunorubicin in rabbit liver and heart. Pharmacol. Toxicol. 1997; 80: 240–245
  • Pu X., Yang K. Guinea pig 11beta-hydroxysteroid dehydrogenase type 1: Primary structure and catalytic properties. Steroids 2000; 65: 148–156
  • Puranen T., Poutanen M., Ghosh D., Vihko P., Vihko R. Characterization of structural and functional properties of human 17beta-hydroxysteroid dehydrogenase type 1 using recombinant enzymes and site-directed mutagenesis. Mol. Endocrinol. 1997; 11: 77–86
  • Ramachandran C., Yuan Z. K., Huang X. L., Krishan A. Doxorubicin resistance in human melanoma cells: MDR-1 and glutathione S-transferase pi gene expression. Biochem. Pharmacol. 1993; 45: 743–751
  • Reidenberg M. M. Environmental inhibition of 11beta-hydroxysteroid dehydrogenase. Toxicology 2000; 144: 107–111
  • Rekka E. A., Soldan M., Belai I., Netter K. J., Maser E. Biotransformation and detoxification of insecticidal metyrapone analogues by carbonyl reduction in the human liver. Xenobiotica 1996; 26: 1221–1229
  • Ris M. M., von Wartburg J. P. Heterogenity of NADPH-dependent aldehyde reductase from human and rat brain. Eur. J. Biochem. 1973; 37(1)69–77
  • Roberts S. Preparative Biotrransformations. Wiley & Sons, Chichester, NY 1997
  • Rosemond M. J., Walsh J. S. Human carbonyl reduction pathways and a strategy for their study in vitro. Drug Metab. Rev. 2004; 36: 335–361
  • Ross D., Siegel D., Beall H., Prakash A. S., Mulcahy R. T., Gibson N. W. DT-Diaphorase in activation and detoxification of quinones. Bioreductive activation of mitomycin C. Cancer Metastasis Rev. 1993; 12: 83–101
  • Rossmann M. G., Liljas A., Bränden C. I., Banaszal L. J. Evolutionary and structural relationships among dehydrogenases. The Enzymes. P.D. Boyer, NY 1975
  • Sawada H., Hara A. The presence of two NADPH-linked aromatic aldehyde-ketone reductases different from aldehyde reductase in rabbit liver. Biochem. Pharmacol. 1979; 28: 1089–1094
  • Sawada H., Hara A., Kato F., Nakayama T. Purification and properties of reductases for aromatic aldehydes and ketones from guinea pig liver. J. Biochem. (Tokyo) 1979; 86: 871–881
  • Sawada H., Hara A., Nakayama T., Kato F. Reductases for aromatic aldehydes and ketones from rabbit liver. Purification and characterization. J. Biochem. (Tokyo) 1980; 87: 1153–1165
  • Sawada H., Hara A., Nakayama T., Nakagawa M., Inoue Y., Hasebe K., Zhang Y. P. Mouse liver dihydrodiol dehydrogenases. Idntity of the predominant and a minor form with 17beta-hydroxysteroid dehydrogenase and aldehyde reductase. Biochem. Pharmacol. 1988; 37: 453–458
  • Sayre L. M., Smith M. A., Perry G. Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 2001; 8: 721–738
  • Schieber A., Frank R. W., Ghisla S. Purification and properties of prostaglandin 9-ketoreductase from pig and human kidney. Identity with human carbonyl reductase. Eur. J. Biochem. 1992; 206: 491–502
  • Schieber A., Ghisla S. Prostaglandin 9-ketoreductase from pig and human kidney: purification, properties and identity with human carbonyl reductase. Eicosanoids. 5 Suppl. 1992; S37–38
  • Schott B., Robert J. Comparative activity of anthracycline 13-dihydrometabolites against rat glioblastoma cells in culture. Biochem. Pharmacol. 1989; 38: 4069–4074
  • Schwartz A. G., Yang P., Swanson G. M. Familial risk of lung cancer among nonsmokers and their relatives. Am. J. Epidemiol. 1996; 144: 554–562
  • Sciotti M. A., Nakajin S., Wermuth B., Baker M. E. Mutation of threonine-241 to proline eliminates autocatalytic modification of human carbonyl reductase. Biochem. J. 2000; 350(Pt 1)89–92
  • Sciotti M., Wermuth B. Coenzyme specificity of human monomeric carbonyl reductase: Contribution of Lys-15, Ala-37 and Arg-38. Chem. Biol. Interact. 2001; 130–132: 871–878
  • Seckl J. R. 11Beta-hydroxysteroid dehydrogenase in the brain: A novel regulator of glucocorticoid action?. Front. Neuroendocrinol. 1997; 18: 49–99
  • Sgraja T., Ulschmid J., Becker K., Schneuwly S., Klebe G., Reuter K., Heine A. Structural insights into the neuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster. J. Mol. Biol. 2004; 342: 1613–1624
  • Shapiro H. K. Carbonyl-trapping therapeutic strategies. Am. J. Ther. 1998; 5: 323–353
  • Shikita M., Talalay P. Preparation of highly purified 3 alpha- and 3 beta-hydroxysteroid dehydrogenases from Pseudomonas sp. Anal. Biochem. 1979; 95: 286–292
  • Skalhegg B. A. 3Alpha-hydroxysteroid dehydrogenase from Pseudomonas testosteroni: Kinetic properties with NAD and its thionicotinamide analogue. Eur. J. Biochem. 1975; 50: 603–609
  • Skalova L., Nobilis M., Szotakova B., Kondrova E., Savlik M., Wsol V., Pichard-Garcia L., Maser E. Carbonyl reduction of the potential cytostatic drugs benfluron and 3,9-dimethoxybenfluron in human in vitro. Biochem. Pharmacol. 2002; 64: 297–305
  • Smolen A., Anderson A. D. Partial purification and characterization of a reduced nicotinamide adenine dinucleotide phosphate-linked aldehyde reductase from heart. Biochem. Pharmacol. 1976; 25: 317–323
  • Soldan M., Nagel G., Losekam M., Ernst M., Maser E. Interindividual variability in the expression and NNK carbonyl reductase activity of 11beta-hydroxysteroid dehydrogenase 1 in human lung. Cancer Lett. 1999; 145: 49–56
  • Soldan M., Netter K., Maser E. Enzymatic detoxification of daunorubicin as supplementary mechanism to multidrug resistance. Exp. Toxic Path. 1996a; 48(Suppl.II)370–376
  • Soldan M., Netter K. J., Maser E. Induction of daunorubicin carbonyl reducing enzymes by daunorubicin in sensitive and resistant pancreas carcinoma cells. Biochem. Pharmacol. 1996b; 51: 117–123
  • Stewart P. M., Krozowski Z. S., Gupta A., Milford D. V., Howie A. J., Sheppard M. C., Whorwood C. B. Hypertension in the syndrome of apparent mineralocorticoid excess due to mutation of the 11 beta-hydroxysteroid dehydrogenase type 2 gene. Lancet. 1996; 347: 88–91
  • Stewart P. M., Murry B. A., Mason J. I. Type 2 11beta-hydroxysteroid dehydrogenase in human fetal tissues. J. Clin. Endocrinol. Metab. 1994; 78: 1529–1532
  • Strausberg R. L., Feingold E. A., Grouse L. H., Derge J. G., Klausner R. D., Collins F. S., Wagner L., Shenmen C. M., Schuler G. D., Altschul S. F., Zeeberg B., Buetow K. H., Schaefer C. F., Bhat N. K., Hopkins R. F., Jordan H., Moore T., Max S. I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A. A., Rubin G. M., Hong L., Stapleton M., Soares M. B., Bonaldo M. F., Casavant T. L., Scheetz T. E., Brownstein M. J., Usdin T. B., Toshiyuki S., Carninci P., Prange C., Raha S. S., Loquellano N. A., Peters G. J., Abramson R. D., Mullahy S. J., Bosak S. A., McEwan P. J., McKernan K. J., Malek J. A., Gunaratne P. H., Richards S., Worley K. C., Hale S., Garcia A. M., Gay L. J., Hulyk S. W., Villalon D. K., Muzny D. M., Sodergren E. J., Lu X., Gibbs R. A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A. C., Shevchenko Y., Bouffard G. G., Blakesley R. W., Touchman J. W., Green E. D., Dickson M. C., Rodriguez A. C., Grimwood J., Schmutz J., Myers R. M., Butterfield Y. S., Krzywinski M. I., Skalska U., Smailus D. E., Schnerch A., Schein J. E., Jones S. J., Marra M. A. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA 2002; 99: 16899–16903
  • Suzuki K., Ueda S., Sugiyama M., Imamura S. Cloning and expression of a Pseudomonas 3alpha-hydroxysteroid dehydrogenase-encoding gene in Escherichia coli. Gene. 1993; 130: 137–140
  • Sweet F., Samant B. R. Bifunctional enzyme activity at the same active site: Study of 3alpha and 20beta activity by affinity alkylation of 3alpha, 20beta-hydroxysteroid dehydrogenase with 17-(bromoacetoxy)steroids. Biochemistry 1980; 19: 978–986
  • Szotakova B., Wsol V., Treitjnar F., Skalova L., Kvasnickova E. Studies on the metabolism of the potential cytostatic drug oracin. Species differences. Exp. Toxic. Pathol. 1996; 48(Suppl. II)377–388
  • Tajima K., Hashizaki M., Yamamoto K., Narimatsu S., Mizutani T. Purification and some properties of two enzymes from rat liver cytosol that catalyze carbonyl reduction of 6-tert-butyl-2, 3-epoxy-5-cyclohexene-1,4-dione, a metabolite of 3-tert-butyl-4-hydroxyanisole. Arch. Biochem. Biophys. 1999; 361: 207–214
  • Talalay P., Dobson M. M., Tapley D. F. Oxidative degradation of testosterone by adaptive enzymes. Nature. 1952; 170: 620–621
  • Tamaoka J., Ha D. M., Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talaly 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an amended decription of genus Comamonas. Int. J. Syst. Bacteriol. 1987; 37: 52–59
  • Tanaka M., Bateman R., Rauh D., Vaisberg E., Ramachandani S., Zhang C., Hansen K. C., Burlingame A. L., Trautman J. K., Shokat K. M., Adams C. L. An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol. 2005; 3: e128
  • Tanaka M., Ohno S., Adachi S., Nakajin S., Shinoda M., Nagahama Y. Pig testicular 20 beta-hydroxysteroid dehydrogenase exhibits carbonyl reductase-like structure and activity. cDNA cloning of pig testicular 20beta-hydroxysteroid dehydrogenase. J. Biol. Chem. 1992; 267: 13451–13455
  • Tanaka N., Nonaka T., Nakanishi M., Deyashiki Y., Hara A. Crystallization of mouse lung carbonyl reductase complexed with NADPH and analysis of symmetry of its tetrameric molecule. J. Biochem. (Tokyo) 1995; 118: 871–873
  • Tanaka N., Nonaka T., Nakanishi M., Deyashiki Y., Hara A., Mitsui Y. Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution: The structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family. Structure 1996a; 4: 33–45
  • Tanaka N., Nonaka T., Tanabe T., Yoshimoto T., Tsuru D., Mitsui Y. Crystal structures of the binary and ternary complexes of 7alpha-hydroxysteroid dehydrogenase from Escherichia coli. Biochemistry 1996b; 35: 7715–7730
  • Terada T., Sugihara Y., Nakamura K., Mizobuchi H., Maeda M. Further characterization of Chinese hamster carbonyl reductases (CHCRs). Chem. Biol. Interact. 2003; 143–144: 373–381
  • Terada T., Sugihara Y., Nakamura K., Sato R., Sakuma S., Fujimoto Y., Fujita T., Inazu N., Maeda M. Characterization of multiple Chinese hamster carbonyl reductases. Chem. Biol. Interact. 2001; 130–132: 847–861
  • Toffoli G., Simone F., Gigante M., Boiocchi M. Comparison of mechanisms responsible for resistance to idarubicin and daunorubicin in multidrug resistant LoVo cell lines. Biochem. Pharmacol. 1994; 48: 1871–1881
  • Tropschug M., Nicholson D. W., Hartl F. U., Kohler H., Pfanner N., Wachter E., Neupert W. Cyclosporin A-binding protein (cyclophilin) of Neurospora crassa. One gene code for both the cytosolic and mitochondrial forms. J. Biol. Chem. 1988; 263: 14433–14440
  • Tsigelny I., Baker M. E. Structures important in mammalian 11beta- and 17beta-hydroxysteroid dehydrogenases. J. Steroid. Biochem. Mol. Biol. 1995a; 55: 589–600
  • Tsigelny I., Baker M. E. Structures stabilizing the dimer interface on human 11beta-hydroxysteroid dehydrogenase types 1 and 2 and human 15-hydroxyprostaglandin dehydrogenase and their homologs. Biochem. Biophys. Res. Commun. 1995b; 217: 859–868
  • Upadhyaya P., Kenney P. M., Hochalter J. B., Wang M., Hecht S. S. Tumorigenicity and metabolism of 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanol enantiomers and metabolites in the A/J mouse. Carcinogenesis. 1999; 20: 1577–1582
  • Usami N., Ishikura S., Abe H., Nagano M., Uebuchi M., Kuniyasu A., Otagiri M., Nakayama H., Imamura Y., Hara A. Cloning, expression and tissue distribution of a tetrameric form of pig carbonyl reductase. Chem. Biol. Interact. 2003; 143–144: 353–361
  • Usami N., Kitahara K., Ishikura S., Nagano M., Sakai S., Hara A. Characterization of a major form of human isatin reductase and the reduced metabolite. Eur. J. Biochem. 2001; 268: 5755–5763
  • Valentino R., Tommaselli A. P., Savastano S., Stewart P. M., Ghiggi M. R., Galletti F., Mariniello P., Lombardi G., Edwards C. R. Alcohol inhibits 11beta-hydroxysteroid dehydrogenase activity in rat kidney and liver. Horm. Res. 1995; 43: 176–180
  • Varughese K. I., Skinner M. M., Whiteley J. M., Matthews D. A., Xuong N. H. Crystal structure of rat liver dihydropteridine reductase. Proc. Natl. Acad. Sci. USA 1992; 89: 6080–6084
  • Wada M., Kataoka M., Kawabata H., Yasohara Y., Kizaki N., Hasegawa J., Shimizu S. Purification and characterization of NADPH-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate, from Candida magnoliae. Biosci. Biotechnol. Biochem. 1998; 62: 280–285
  • Waksman S. A. The Actinomycetes. Williams and Wilkins Co, Baltimore, MD 1961
  • Watanabe K., Sugawara C., Ono A., Fukuzumi Y., Itakura S., Yamazaki M., Tashiro H., Osoegawa K., Soeda E., Nomura T. Mapping of a novel human carbonyl reductase, CBR3, and ribosomal pseudogenes to human chromosome 21q22.2. Genomics. 1998; 52: 95–100
  • Wermuth B. Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J. Biol. Chem. 1981; 256: 1206–1213
  • Wermuth B. Human carbonyl reductases. Prog. Clin. Biol. Res. 1982; 114: 261–274
  • Wermuth B. Aldo-keto reductases. Prog. Clin. Biol. Res. 1985; 174: 209–230
  • Wermuth B. Expression of human and rat carbonyl reductase in E. coli. Comparison of the recombinant enzymes. Adv. Exp. Med. Biol. 1995; 372: 203–209
  • Wermuth B., Bohren K. M., Ernst E. Autocatalytic modification of human carbonyl reductase by 2-oxocarboxylic acids. FEBS Lett. 1993; 335: 151–154
  • Wermuth B., Bohren K. M., Heinemann G., von Wartburg J. P., Gabbay K. H. Human carbonyl reductase. Nucleotide sequence analysis of a cDNA and amino acid sequence of the encoded protein. J. Biol. Chem. 1988; 263: 16185–16188
  • Wermuth B., Burgisser H., Bohren K., von Wartburg J. P. Purification and characterization of human-brain aldose reductase. Eur. J. Biochem. 1982; 127: 279–284
  • Wermuth B., Mader-Heinemann G., Ernst E. Cloning and expression of carbonyl reductase from rat testis. Eur. J. Biochem. 1995; 228: 473–479
  • Wermuth B., Platts K. L., Seidel A., Oesch F. Carbonyl reductase provides the enzymatic basis of quinone detoxication in man. Biochem. Pharmacol. 1986; 35: 1277–1282
  • Willems A., de Vos P., de Lay J. The Prokaryotes, a Handbook on the Biology of Bacteria, Ecophysiology, Isolation, Identification an Applications, A. Balows, H.G. Trueper, M. Dworkin. Springer Verlag, Berlin 1992
  • Wirth H. P., Wermuth B. Immunochemical characterization of aldo-keto reductases from human tissues. FEBS Lett. 1985; 187: 280–282
  • Wirth H., Wermuth B. Immunohistochemical localization of carbonyl reductase in human tissues. J. Histochem. Cytochem. 1992; 40: 1857–1863
  • Wsol V., Kvasnickova E., Szotakova B., Hais I. M. High-performance liquid chromatographic assay for the separation and characterization of metabolites of the potential cytostatic drug oracine. J. Chromatogr. B Biomed. Appl. 1996; 681: 169–175
  • Wsol V., Skalova L., Szotakova B., Trejtnar F., Kvasnickova E. Sex differences in stereospecificity of oracin reductases in rat in vitro and in vivo. Chirality 1999; 11: 505–509
  • Wsol V., Szotakova B., Kvasnickova E., Fell A. F. High-performance liquid chromatography study of stereospecific microsomal enzymes catalysing the reduction of a potential cytostatic drug, oracin. Interspecies comparison. J. Chromatogr. A. 1998; 797: 197–201
  • Wsol V., Szotakova B., Skalova L., Cepkova H., Kvasnickova E. The main metabolic pathway of oracin, a new potential cytostatic drug, in human liver microsomes and cytosol: Stereoselectivity of reoxidation of the principal metabolite 11-dihydrooracin to oracin. Enantiomer. 2000; 5: 263–270
  • Wsol V., Szotakova B., Skalova L., Maser E. Stereochemical aspects of carbonyl reduction of the original anticancer drug oracin by mouse liver microsomes and purified 11beta-hydroxysteroid dehydrogenase type 1. Chem. Biol. Interact. 2003; 143–144: 459–468
  • Wsol V., Szotakova B., Skalova L., Maser E. The novel anticancer drug oracin: different stereospecificity and cooperativity for carbonyl reduction by purified human liver 11beta-hydroxysteroid dehydrogenase type 1. Toxicology 2004; 197: 253–261
  • Yamano S., Nakamoto N., Toki S. Purification and characterization of rat liver naloxone reductase that is identical to 3alpha-hydroxysteroid dehydrogenase. Xenobiotica 1999; 29: 917–930
  • Yesair D. W., Thayer P. S., McNitt S., Teague K. Comparative uptake, metabolism and retention of anthracyclines by tumors growing in vitro and in vivo. Eur. J. Cancer. 1980; 16: 901–907
  • Yokota H., Yuasa A., Sato R. Topological disposition of UDP-glucuronyltransferase in rat liver microsomes. J. Biochem. (Tokyo) 1992; 112: 192–196
  • Yum D. Y., Lee B. Y., Pan J. G. Identification of the yqhE and yafB genes encoding two 2, 5-diketo-D-gluconate reductases in Escherichia coli. Appl. Environ. Microbiol. 1999a; 65: 3341–3346
  • Yum M. K., Kim N. S., Oh J. W., Kim C. R., Lee J. W., Kim S. K., Noh C. I., Choi J. Y., Yun Y. S. Non-linear cardiac dynamics and morning dip: An unsound circadian rhythm. Clin. Physiol. 1999b; 19: 56–67
  • Zelinski T., Peters J., Kula M. R. Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis. J. Biotechnol. 1994; 33: 283–292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.