848
Views
105
CrossRef citations to date
0
Altmetric
Research Article

Cytochromes P450: A Structure-Based Summary of Biotransformations Using Representative Substrates

, &
Pages 1-100 | Published online: 09 Oct 2008

REFERENCES

  • Cerny M. A., Hanzlik R. P. Cytochrome P450-catalyzed oxidation of N-benzyl-N- cyclopropylamine generates both cyclopropanone hydrate and 3-hydroxypropionaldehyde via hydrogen abstraction, not single electron transfer. J. Amer. Chem. Soc. 2006; 128: 3346–3354
  • Constantino L., Rosa E., Iley J. The microsomal demethylation of N, N-dimethylbenzamides—substituent and kinetic deuterium-isotope effects. Biochem. Pharmacol. 1992; 44: 651–658
  • Crivori P., Poggesi I. Computational approaches for predicting CYP-related metabolism properties in the screening of new drugs. Eur J Med Chem. 2006; 41: 795–808
  • Daly A. K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet. 2006; 45: 13–31
  • Danielson P. B. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 2002; 3: 561–597
  • Dinnocenzo J. P., Karki S. B., Jones J. P. On isotope effects for the cytochrome-P-450 oxidation of substituted N, N-dimethylanilines. J. Amer. Chem. Soc. 1993; 115: 7111–7116
  • Ekins S., Bravi G., Wikel J. H., Wrighton S. A. Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J. Pharmacol Exp Ther. 1999; 291: 424–433
  • Ekins S., Wrighton S. A. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 1999; 31: 719–754
  • Ekins S., de Groot M. J., Jones J. P. Pharmacophore and three-dimensional quantitative structure activity relationship methods for modeling cytochrome P450 active sites. Drug Metab. Dispos. 2001; 29: 936–944
  • Ekins S., Stresser D. M., Williams J. A. In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol. Sci. 2003; 24: 161–166
  • Fontana E., Dansette P. M., Poli S. M. Cytochrome P450 enzymes mechanism based inhibitors: Common sub-structures and reactivity. Curr. Drug Metab. 2005; 6: 413–454
  • Fukami T., Nakajima M., Sakai H., Katoh M., Yokoi T. CYP2A13 metabolizes the substrates of human CYP1A2, phenacetin, and theophylline. Drug Metab. Dispos. 2007; 35: 335–339
  • Garfinkel D. Studies on pig liver microsomes I. Enzymic and pigment composition of different microsomal fractions. Arch. Biochem. Biophys. 1958; 77: 493–509
  • Groves J. T. Key elements of the chemistry of cytochrome P-450. The oxygen rebound mechanism. J. Chem. Educat. 1985; 62: 928–931
  • Guengerich F. P., Shimada T. Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 1991; 4: 391–404
  • Guengerich F. P. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 2001; 14: 611–641
  • Guengerich F. P. Cytochromes P450, drugs, and diseases. Mol Interv. 2003; 3: 194–204
  • Guengerich F. P. Human cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Kluwer Academic/Plenum, New York 2005; 377–530
  • Gund P. Three-dimensional pharmacophoric pattern searching. Prog. Mol. Subcell. Biol. 1977; 5: 117–143
  • Hall L. R., Hanzlik R. P. Kinetic deuterium-isotope effects on the N-demethylation of tertiary amides by cytochrome-P-450. J. Biol. Chem. 1990; 265: 12349–12355
  • Hansch C., Mekapati S. B., Kurup A., Verma R. P. QSAR of cytochrome P450. Drug Metab. Rev. 2004; 36: 105–156
  • He X. Y., Tang L., Wang S. L., Cai Q. S., Wang J. S., Hong J. Y. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer 2006; 118: 2665–2671
  • Isin E. M., Guengerich F. P. Complex reactions catalyzed by cytochrome P450 enzymes. Biochim. Biophys. Acta-Gen. Subj. 2007; 1770: 314–329
  • Karki S. B., Dinnocenzo J. P., Jones J. P., Korzekwa K. R. Mechanism of oxidative amine dealkylation of substituted N, N-dimethylanilines by cytochrome P-450: application of isotope effect profiles. Journal of the American Chemical Society. 1995; 117: 3657–3657
  • Klingenberg M. Pigments of rat liver microsomes. Arch. Biochem. Biophys. 1958; 75: 376–386
  • Lee H., Yeom H., Kim Y. G., Yoon C. N., Jin C., Choi J. S., Kim B., Kim D. Structure-related inhibition of human hepatic caffeine N3-demethylation by naturally occurring flavonoids. Biochem. Pharmacol. 1998; 55: 1369–1375
  • Lewis D. F. V. Guide to Cytochromes P450: Structure and Function. Taylor and Francis, London 2001
  • Lewis D. F. V. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: A compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Curr. Med. Chem. 2003; 10: 1955–1972
  • Lewis D. F. V. 57 varieties: The human cytochromes P450. Pharmacogenetics 2004; 5: 305–318
  • Locuson C. W., Wahlstrom J. L. Three-dimensional quantitative structure-activity relationship analysis of cytochromes P450: Effect of incorporating higher-affinity ligands and potential new applications. Drug Metab. Dispos. 2005; 33: 873–878
  • Mansuy D. The great diversity of reactions catalyzed by cytochromes P450. Comp. Biochem. Phys. C 1998; 121: 5–14
  • Meunier B., De Visser S. P., Shaik S. Mechanism of oxidative reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 2004; 104: 3947–3980
  • Mitsuda M., Iwasaki M., Asahi S. Cynomolgus monkey cytochrome P4502C43: cDNA cloning, heterologous expression, purification and characterization. J. Biochem. 2006; 139: 865–872
  • Nelson D. L., Cox M. M. Mixed-function oxidases, oxygenases and cytochrome P-450. Lehninger Principles of Biochemistry. W.H. Freeman and Company, New York 2005; 798–799
  • Omiecinski C. J., Remmel R. P., Hosagrahara V. P. Concise review of the cytochrome P450s and their roles in toxicology. Toxicol. Sci. 1999; 48: 151–156
  • Ortiz de Montellano P. R. Cytochromes P450: Structure, mechanism and biochemistry. Kluwer Academic/ Plenum, New York 2005
  • Parkinson A. Biotransformation of xenobiotics. Casarett and Doull's Toxicology: The Basic Science of Poisons, C. D. Klaassen. McGraw-Hill, New York 2001; 172–191
  • Ridderstrom M., Zamora I., Fjellstrom O., Andersson T. B. Analysis of selective regions in the active sites of human cytochromes P450, 2CS, 2C9, 2C18, and 2C19 homology models using GRID/CPCA. J. Med. Chem. 2001; 44: 4072–4081
  • Shaik S., Kumar D., de Visser S. P., Altun A., Thiel W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes. Chem. Rev. 2005; 105: 2279–2328
  • Smith G., Stubbins M. J., Harries L. W., Wolf C. R. Molecular genetics of the human cytochrome P450 monooxygenase superfamily. Xenobiotica 1998; 28: 1129–1165
  • Tegtmeier M., Legrum W. Approach to detect substrates suitable to measure the coumarin 7-hydroxylase (CYP 2A-5)—Structure-activity-relationships. Archiv. Der Pharmazie 1994; 327: 299–302
  • Testa B. The metabolism of drugs and other xenobiotics. Academic Press Limited, London 1995
  • Von Weymarn L. B., Murphy S. E. CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica 2003; 33: 73–81
  • Wang Y. H., Han K. L., Yang S. L., Yang L. Structural determinants of steroids for cytochrome P450 3A4-mediated metabolism. Theochem-J. Mol. Struct. 2004; 710: 215–221
  • Williams J. A., Ring B. J., Cantrell V. E., Jones D. R., Eckstein J., Ruterbories K., Hamman M. A., Hall S. D., Wrighton S. A. Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 2002; 30: 883–891

REFERENCES

  • Abelo A., Andersson T. B., Antonsson M., Naudot A. K., Skanberg I., Weidolf L. Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab. Dispos. 2000; 28: 966–972
  • Aklillu E., Ovrebo S., Botnen I. V., Otter C., Ingelman-Sundberg M. Characterization of common CYP1B1 variants with different capacity for benzo[a]pyrene-7,8-dihydrodiol epoxide formation from benzo[a]pyrene. Cancer Res. 2005; 65: 5105–5111
  • Altamura A. C., Moro A. R., Percudani M. Clinical pharmacokinetics of fluoxetine. Clin. Pharmacokin. 1994; 26: 201–214
  • Araya Z., Wikvall K. 6-alpha-hydroxylation of taurochenodeoxycholic acid and lithocholic acid by CYP3A4 in human liver microsomes. Biochem. Biophys. Acta 1999; 1438: 47–54
  • Bauer E., Guo Z., Ueng Y.-F., Bell L. C., Zeldin D., Guengerich F. P. Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995; 8: 136–142
  • Belpaire F. M., Wijnant P., Temmerman A., Rasmussen B. B., Brosen K. The oxidative metabolism of metoprolol in human liver microsomes: Inhibition by the selective serotonin reuptake inhibitors. Eur. J. Clin. Pharmacol. 1998; 54: 261–264
  • Bergqvist Y., Hopstadius C. Simultaneous separation of atovaquone, proguanil and its metabolites on a mixed mode high-performance liquid chromatographic column. J. Chromatogr. B 2000; 741: 189–193
  • Bland T. M., Haining R. L., Tracy T. S., Callery P. S. CYP2C-catalyzed delta9-tetrahydrocannabinol metabolism: Kinetics, pharmacogenetics and interaction with phenytoin. Biochem. Pharmacol. 2005; 70: 1096–1103
  • Bolton J. L., Thompson J. A. Oxidation of butylated hydroxytoluene to toxic metabolites-factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes. Drug Metab. Dispos. 1991; 19: 467–472
  • Bomhard E., Herbold B. Genotoxic activities of aniline and its’ metabolites and their relationship to the carcinogenicity of aniline in the spleen of rats. Crit. Rev. Toxicol. 2005; 35: 783–835
  • Borges V., Yang E., Dunn J., Henion J. High-throughput liquid chromatography-tandem mass spectrometry determination of bupropion and its metabolites in human, mouse and rat plasma using a monolithic column. J. Chromatogr. B 2004; 804: 277–287
  • Botsch S., Gautier J. C., Beaune P., Eichelbaum M., Kroemer H. K. Identification and characterization of the cytochrome-P450 enzymes involved in N-dealkylation of propafenone - molecular-base for interaction potential and variable disposition of active metabolites. Mol. Pharmacol. 1993; 43: 120–126
  • Breyer-Pfaff U. The metabolic fate of amitriptyline, nortriptyline and amitriptylinoxide in man. Drug Metab. Rev. 2004; 36: 723–746
  • Carlson T. J., Jones J. P., Peterson L., Castagnoli N., Iyer K. R., Trager W. F. Stereoselectivity and isotope effects associated with cytochrome P450-catalyzed oxidation of (S)-nicotine - the possibility of initial hydrogen atom abstraction in the formation of the delta-1′,5′-nicotinium ion. Drug Metab. Dispos. 1995; 23: 749–756
  • Cerqueira P. M., Mateus F. H., Cesarino E. J., Bonato P. S., Lanchote V. L. Enantioselectivity of debrisoquine 4-hydroxylation in Brazilian caucasion hypertensive patients phenotyped as extensive metabolizers. J. Chromatogr. B 2000; 749: 153–161
  • Chae Y.-H., Thomas T., Guengerich F. P., Fu P. P., El-Bayoumy K. Comparative metabolism of 1-, 2-, and 4-nitropyrene by human hepatic and pulmonary microsomes. Cancer Res. 1999; 59: 1473–1480
  • Chen C., Lin J. T., Goss K. A., He Y., Halpert J. R., Waxman D. J. Activation of the anticancer prodrugs cyclophosphamide and ifosfamide: Identification of cytochrome P450 2B enzymes and site-specific mutants with improved enzyme kinetics. Mol. Pharmacol. 2004; 65: 1278–1285
  • Cheung C., Yu A. M., Ward J. M., Krausz K. W., Akiyama T. E., Feigenbaum L., Gonzalez F. J. The CYP2E1-humanized transgenic mouse: Role of CYP2E1 in acetaminophen hepatotoxicity. Drug Metab. Dispos. 2005; 33: 449–457
  • Chung W. G., Park C. S., Roh H. K., Lee W. K., Cha Y. N. Oxidation of ranitidine by isozymes of flavin-containing monooxygenase and cytochrome P450. Jpn. J. Pharmacol. 2000; 84: 213–220
  • Coller J. K., Somogyi A. A., Bochner F. Comparison of (S)-mephenytoin and proguanil oxidation in vitro: Contribution of several CYP isoforms. Brit. J. Clin. Pharmacol. 1999; 48: 158–167
  • Correia M. A. Human and rat cytochromes P450: Functional markers, diagnostic inhibitor probes, and parameters frequently used in P450 studies. Cytochrome P450: Structure, Mechanism, and Biochemistry, P. R. Ortiz de Montellano. Kluwer Academic/Plenum Publishers, New York 2005; 619–657
  • Coulombe R. A., Guarisco J. A., Klein P. J., Hall J. O. Chemoprevention of aflatoxicosis in poultry by dietary butylated hydroxytoluene. Anim. Feed Sci. Tech. 2005; 121: 217–225
  • Court M. H., Von Moltke L. L., Shader R. I., Greenblatt D. J. Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm. Drug Dispos. 1997; 18: 213–226
  • Coutts R. T., Torokboth G. A., Chu L. V., Tam Y. K., Pasutto F. M. In vivo metabolism of lidocaine in the rat - isolation of urinary metabolites as pentafluorobenzoyl derivatives and their identification by combined gas chromatography-mass spectrometry. J. Chromatogr. B 1987; 421: 267–280
  • Crewe H. K., Notley L. M., Wunsch R. M., Lennard M. S., Gillam E. M. J. Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: Formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab. Dispos. 2002; 30: 869–874
  • Cummins C. L., Jacobsen W., Christians U., Benet L. Z. CYP3A4-transfected caco-2 cells as a tool for understanding biochemical absorption barriers: Studies with sirolimus and midazolam. J. Pharmacol. Exp. Ther. 2004; 308: 143–155
  • Damkier P., Hansen L. L., Brosen K. Effect of fluvoxamine on the pharmacokinetics of quinidine. Eur. J. Clin. Pharmacol. 1999; 55: 451–456
  • Damkier P., Brosen K. Quinidine as a probe for CYP3A4 activity: Intrasubject variability and lack of correlation with probe-based assays for CYP1A2, CYP2C9, CYP2C19, and CYP2D6. Clin. Pharmacol. Ther. 2000; 68: 199–209
  • Daniel W. A., Syrek M., Rylko Z., Kot M. Effects of phenothiazine neuroleptics on the rate of caffeine demethylation and hydroxylation in the rat liver. Pol. J. Pharmacol. 2001; 53: 615–621
  • Davies B. J., Herbert M. K., Coller J. K., Somogyi A. A., Milne R. W., Sallustio B. C. Determination of the 4-monohydroxy metabolites of perhexiline in human plasma, urine and liver nicrosomes by liquid chromatography. J. Chromatogr. B 2006; 843: 302–309
  • Desai P. B., Duan J. Z., Zhu Y. W., Kouzi S. Human liver microsomal metabolism of paclitaxel and drug interactions. Eur. J. Drug Metab. Pharmacokinet. 1998; 23: 417–424
  • Desta Z., Soukhova N., Mahal S. K., Flockhart D. A. Interaction of cisapride with the human cytochrome P450 system: Metabolism and inhibition studies. Drug Metab. Dispos. 2000; 28: 789–800
  • Desta Z., Soukhova N. V., Morocho A. M., Flockhart D. A. Stereoselective metabolism of cisapride and enantiomer-enantiomer interaction in human cytochrome P450 enzymes: Major role of CYP3A. J. Pharmacol. Exp. Ther. 2001; 298: 508–520
  • Desta Z., Ward B. A., Soukhova N. V., Flockhart D. A. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: Prominent roles for CYP3A and CYP2D6. J. Pharmacol. Exp. Ther. 2004; 310: 1062–1075
  • Dierks E. A., Stams K. R., Lim H., Cornelius G., Zhang H., Ball S. E. A method for the simultaneous evaluation of the activities of seven major human drug-metabolizing cytochrome P450s using and in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry. Drug Metab. Rev. 2001; 29: 23–29
  • Donato M. T., Jimenez N., Castell J. V., Gomez-Lechon M. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 2004; 32: 609–706
  • Ebner T., Eichelbaum M. The metabolism of aprindine in relation to the sparteine/debrisoquine polymorphism. Brit. J. Clin. Pharmacol. 1993; 35: 426–430
  • Fang J., Baker G. B., Silverstone P. H., Coutts R. T. Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell. Mol. Neurobiol. 1997; 17: 227–233
  • Fang J., Coutts R. T., McKenna K. F., Baker G. B. Elucidation of individual cytochromes P450 enzymes involved in the metabolism of clozapine. N-S Arch. Pharmacol. 1998; 358: 592–599
  • Fisone G., Borgkvist A., Usiello A. Caffeine as a psychomotor stimulant: Mechanism of action. Cell Mol. Life Sci. 2004; 61: 857–872
  • Flammang A. M., Gelboin H. V., Aoyama T., Gonzalez F. J., McCoy G. D. Nicotine metabolism by cDNA-expressed human cytochrome P-450s. Biochem. Arch. 1992; 8: 1–8
  • Fukami T., Nakajima M., Sakai H., Katoh M., Yokoi T. CYP2A13 metabolizes the substrates of human CYP1A2, phenacetin, and theophylline. Drug Metab. Dispos. 2007; 35: 335–339
  • Gallagher E. P., Kunze K. L., Stapleton P. L., Eaton D. L. The kinetics of aflatoxin b1 oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Toxicol. Appl. Pharm. 1996; 141: 595–606
  • Goosen T. C., Cillie D., Bailey D. G., Yu C., He K., Hollenberg P. F., Woster P. M., Cohen L., Williams J. A., Rheeders M., Dijkstra H. P. Bergamottin contribution to the grapefruit juice-felodipine interaction and disposition in humans. Clin. Pharmacol. Ther. 2004; 76: 607–617
  • Guengerich F. P., Brian W. R., Iwasaki M., Sari M. A., Baarnhielm C., Berntsson P. Oxidation of dihydropyridine calcium-channel blockers and analogs by human liver cytochrome-P-450 IIIa4. J. Med. Chem. 1991; 34: 1838–1844
  • Guengerich F. P. Cytochrome P450 oxidations in the generation of reactive electrophiles: Epoxidation and related reactions. Arch. Biochem. Biophys. 2003; 409: 59–71
  • Guengerich F. P. Human cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism and Biochemistry, P. R. Ortiz de Montellano. Kluwer Academic/Plenum, New York 2005; 377–530
  • Ha H. R., Chen J. Z., Freiburghaus A. U., Follath F. Metabolism of theophylline by cDNA-expressed human cytochromes P-450. Brit. J. Clin. Pharmacol. 1995; 39: 321–326
  • Ha H. R., Follath F. Metabolism of antiarrhythmics. Curr. Drug Metab. 2004; 5: 543–571
  • Hamman M. A., Thompson G. A., Hall S. D. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem. Pharmacol. 1997; 54: 33–41
  • He K., Woolf T. F., Hollenberg P. F. Mechanism-based inactivation of cytochrome P-450-3A4 by mifepristone (RU486). J. Pharmacol. Exp. Ther. 1999; 288: 791–797
  • He X. Y., Tang L., Wang S. L., Cai Q. S., Wang J. S., Hong J. Y. Efficient activation of aflatoxin B1 by cytochrome P450 2A13, an enzyme predominantly expressed in human respiratory tract. Int. J. Cancer 2006; 118: 2665–2671
  • Hecht S. S., Hochalter J. B., Villalta P. W., Murphy S. E. 2'-hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: Formation of a lung carcinogen precursor. Proc. Natl. Acad. Sci. USA 2000; 97: 12493–12497
  • Hermansson J., Glaumann H., Karlen B., von Bahr C. Metabolism of lidocaine in human liver in vitro. Acta Pharmacol. et Toxicol. 1980; 47: 49–52
  • Higashi Y., Nakamura S., Fujii Y. Sensitive determination of 4-(4-chlorophenyl)-4-hydroxypiperidine, a mmtabolite of haloperidol, in a rat biological sample by HPLC with fluorescence detection after pre-column derivatization using 4-fluoro-7-nitro-2,1,3-benzoxadiazole. Biomed. Chromatogr. 2006; 20: 964–970
  • Hirani V. N., Raucy J. L., Lasker J. M. Conversion of the HIV protease inhibitor nelifinavir to a bioactive metabolite by human liver CYP2C19. Drug Metab. Dispos. 2004; 32: 1462–1467
  • Hukkanen J., Jacob P., Benowitz N. L. Metabolism and disposition kinetics of nicotine. Pharmacol. Rev. 2005; 57: 79–115
  • Hyland R., Gescher A., Thummel K., Schiller C., Jheeta P., Mynett K., Smith A. W., Mraz J. Metabolic oxidation and toxification of N-methylformamide catalyzed by the cytochrome P450 isoenzyme CYP2E1. Mol. Pharmacol. 1992; 41: 259–266
  • IAR C. Dichloromethane. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Re-evaluation of Some Organic Chemicals, Hydrazine and Hydrogen Peroxide. World Health Organization, LyonsFrance 1998; 251–315
  • Iba M. M., Fung J., Gonzalez F. J. Functional CYP2E1 is required for substantial in vivo formation of 2,5-hexanedione from N-hexane in the mouse. Arch. Toxicol. 2000; 74: 582–586
  • Imaoka S., Enomoto K., Oda Y., Asada A., Fujimori M., Shimada T., Fujita S., Guengerich F. P., Funae Y. Lidocaine metabolism by human cytochrome-P-450s purified from hepatic microsomes — comparison of those with rat hepatic cytochrome-P-450s. J. Pharmacol. Exp. Ther. 1990; 255: 1385–1391
  • James L. P., Mayeux P. R., Hinson J. A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003; 31: 1499–1506
  • Jang G. R., Wrighton S. A., Benet L. Z. Identification of CYP3A4 as the principal enzyme catalyzing mifepristone (RU 486) oxidation in human liver microsomes. Biochem. Pharmacol. 1996; 52: 753–761
  • Jann M. W., Shirley K. L., Small G. W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokin. 2002; 41: 719–739
  • Jefferson J., Pradko J., Muir K. Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin. Ther. 2005; 27: 1685–1695
  • Kamdem L. K., Streit F., Zanger U. M., Brockmoller J., Oellerich M., Armstrong V. W., Wojnowski L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 2005; 51: 1374–1381
  • Kaminsky L. S., Zhang Z. Y. Human P450 metabolism of warfarin. Pharmacol. Therapeut. 1997; 73: 67–74
  • Kariya S., Isozaki K., Suzuki T., Narimatsu S. Oxidative metabolism of flunarizine and cinnarizine by microsomes from B-lymphoblastoid cell lines expressing human cytochrome P450 enzymes. Biol. Pharm. Bull. 1996; 19: 1511–1514
  • Kedderis G. L., Carfagna M. A., Held S. D., Batra R., Murphy J. E., Gargas M. L. Kinetic-analysis of furan biotransformation by F344 rats in-vivo and in-vitro. Toxicol. Appl. Pharm. 1993; 123: 274–282
  • Kerr B. M., Thummel K. E., Wurden C. J., Klein S. M., Kroetz D. L., Gonzalez F. J., Levy R. H. Human liver carbamazepine metabolism: Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem. Pharmacol. 1994; 47: 1969–1979
  • Khan K. K., He Y. Q., Domanski T. L., Halpert J. R. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: An evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mol. Pharmacol. 2002; 61: 495–506
  • Kharasch E. D., Hankins D. C., Fenstamaker K., Cox K. Human halothane metabolism, lipid peroxidation, and cytochromes P(450)2A6 and P(450)3A4. Eur. J. Clin. Pharmacol. 2000; 55: 853–859
  • Kiang T. K. L., Ho P. C., Anari M. R., Tong V., Abbott F. S., Chang T. K. H. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol. Sci. 2006; 94: 261–271
  • Kim D., Guengerich F. P. Enhancement of 7-methoxyresorufin o-demethylation activity of human cytochrome P450 1A2 by molecular breeding. Arch. Biochem. Biophys. 2004; 432: 102–108
  • Kim H., Wang R. S., Elovaaras E., Raunio H., Pelkonin O., Aoyama T., Vainios H., Nakajima T. Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica 1997; 27: 657–665
  • Klees T. M., Sheffels P., Dale O., Kharasch E. D. Metabolism of alfentanil by cytochrome P4503A (CYP3A) enzymes. Drug Metab. Dispos. 2005; 33: 303–311
  • Ko J., Desta Z., Flockhart D. A. Human N-demethylation of (S)-mephenytoin by cytochrome P450s 2C9 and 2B6. Drug Metab. Dispos. 1998; 26: 775–778
  • Kobayashi T., Sugihara J., Harigaya S. Mechanism of metabolic cleavage of a furan ring. Drug Metab. Dispos. 1987; 15: 877–881
  • Koyama E., Chiba K., Tani M., Ishizaki T. Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J. Pharmacol. Exp. Ther. 1996; 278: 21–30
  • Kreth K. P., Kovar K. A., Schwab M., Zanger U. M. Identification of the human cytochromes P450 involved in the oxidative metabolism of"ecstasy"-related designer drugs. Biochem. Pharmacol. 2000; 59: 1563–1571
  • Kroemer H. K., Fischer C., Meese C. O., Eichelbaum M. Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: In vitro evaluation of the mechanism. Mol. Pharmacol. 1991; 40: 135–142
  • Kumar G. N., Dubberke E., Rodrigues A. D., Roberts E., Dennisen J. F. Identification of cytochromes P450 involved in the human liver microsomal metabolism of the thromboxane A2 inhibitor seratrodast (ABT-001). Drug Metab. Dispos. 1997; 25: 110–115
  • Kupfer R., Dwyer-Nield L., Malkinson A., Thompson J. A. Lung toxicity and tumor promotion by hydroxylated derivatives of 2,6-di-tert-butyl-4-methylphenol (BHT) and 2-tert-butyl-4-methyl-6-iso-propylphenol: Correlation with quinone methide reactivity. Chem. Res. Toxicol. 2002; 15: 1106–1112
  • Labbe L., Abolfathi Z., Lessard E., Pakdel H., Beaune P., Turgeon J. Role of specific cytochrome P450 enzymes in the N-oxidation of the antiarrhythmic agent mexiletine. Xenobiotica 2003; 33: 13–25
  • Lampen A., Zhang Y., Hackbarth I., Benet L. Z., Sewing K.-F., Christians U. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J. Pharmacol. Exp. Ther. 1998; 285: 1104–1112
  • Law M. Y. L., Slawson M. H., Moody D. E. Selective involvement of cytochrome P450 2D subfamily in in vivo 4-hydroxylation of amphetamine in rat. Drug Metab. Dispos. 2000; 28: 348–353
  • Le Fur J. M., Labaune J. P. Metabolic pathway by cleavage of a furan ring. Xenobiotica 1985; 15: 567–577
  • Li X., Bjorkman A., Andersson T., Ridderstrom M., Masimirembwam C. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: A new high affinity and turnover enzyme specific probe substrate. J. Pharmacol. Exp. Ther. 2002; 300: 399–407
  • Liao K. H., Mayeno A. N., Reardon K. F., Yang R. S. H. A novel, sensitive method for determining benzo[a]pyrene-diones using high-performance liquid chromatography with post-column zinc reduction. J. Chromatogr. B 2005; 824: 166–174
  • Lin H., Parsels L. A., Maybaum J., Hollenberg P. F. N-nitrosodimethylamine-mediated cytotoxicity in a cell line expressing P450 2E1: Evidence for apoptotic cell death. Toxicol. Appl. Pharm. 1999; 157: 117–124
  • Lin L. Y., Di Stefano E. W., Schmitz D. A., Hsu L., Ellis S. W., Lennard M. S., Tucker G. T., Cho A. K. Oxidation of methamphetamine and methylenedioxymethamphetamine by CYP2D6. Drug Metab. Dispos. 1997; 25: 1059–1064
  • Lipscomb J. C., Garrett C. M., Snawder J. E. Cytochrome P450-dependent metabolism of trichloroethylene: Interindividual differences in humans. Toxicol. Appl. Pharm. 1997; 142: 311–318
  • Liu Z. Q., Zhu B., Tan Y. F., Tan Z. R., Wang L. S., Huang S. L., Shu Y., Zhou H. H. O-dealkylation of fluoxetine in relation to CYP2C19 gene dose and involvement of CYP3A4 in human liver microsomes. J. Pharmacol. Exp. Ther. 2001; 299: 105–111
  • Ma X., Idle J. R., Krausz K. W., Gonzalez F. J. Metabolism of melatonin by human cytochromes P450. Drug Metab. Dispos. 2005; 33: 489–494
  • Machinist J. M., Mayer M. D., Shet M. S., Ferrero J. L., Rodrigues A. D. Identification of the human liver cytochrome P450 enzymes involved in the metabolism of zileuton (ABT-077) and its N-dehydroxylated metabolite, Abbott-66193. Drug Metab. Dispos. 1995; 23: 1163–1174
  • Mankowski D. C. The role of CYP2C19 in the metabolism of (+/-) bufuralol, the prototypic substrate of CYP2D6. Drug Metab. Dispos. 1999; 27: 1024–1028
  • Marcucci K. A., Pearce R. E., Crespi C., Steimel D. T., Leeder J. S., Gaedigk A. Characterization of cytochrome P450 2D6.1 (CYP2D6.1), CYP2D6.2, and CYP2D6.17 activities toward model CYP2D6 substrates dextromethorphan, bufuralol, and debrisoquine. Drug Metab. Dispos. 2002; 30: 595–601
  • Marill J., Idres N., Capron C. C., Nguyen E., Chabot G. G. Retinoic acid metabolism and mechanism of action: A review. Curr. Drug Metab. 2003; 4: 1–10
  • Marre F., Fabre G., Lacarelle B., Bourrie M., Catalin J., Berger Y., Rahmani R., Cano J. Involvement of the cytochrome P450IID subfamily in minaprine 4-hydroxylation by human hepatic microsomes. Drug Metab. Dispos. 1992; 20: 316–321
  • Martin H., Sarsat J. P., de Waziers I., Housset C., Balladur P., Beaune P., Albaladejo V., Lerche-Langrand C. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm. Res. 2003; 20: 557–568
  • Maurer H. H., Bickeboeller-Friedrich J., Kraemer T., Peters F. T. Toxicokinetics and analytical toxicology of amphetamine-derived designer drugs (‘ecstasy’). Toxicol. Lett. 2000; 112: 133–142
  • McGraw J. E., Waller D. P. Specific human CYP 450 isoform metabolism of a pentachlorobiphenyl (PCB-IUPAC# 101). Biochem. Biophys. Res. Co. 2006; 344: 129–133
  • McSorley L. C., Daly A. K. Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem. Pharmacol. 2000; 60: 517–526
  • Mehvar R., Brocks D. Stereospecific pharmacookinetics and pharmacodynamics of beta-adrenergic blockers in humans. J. Pharmacol. Pharm. Sci. 2001; 4: 185–200
  • Miller K. P., Ramos K. S. Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab. Rev. 2001; 33: 1–35
  • Miners J. O., Birkett D. J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Brit. J. Clin. Pharmacol. 1998; 45: 525–538
  • Mitra A. K., Thummel K. E., Kalhorn T. F., Kharasch E. D., Unadkat J. D., Slattery J. T. Metabolism of dapsone to its hydroxylamine by CYP2E1 in vitro and in vivo. Clin. Pharmacol. Ther. 1995; 58: 556–566
  • Nakajima M., Kobayashi K., Shimada N., Tokudome S., Yamamoto T., Kuroiwa Y. Involvement of CYP1A2 in mexiletine metabolism. Brit. J. Clin. Pharmacol. 1998; 46: 55–62
  • Nakamura H., Ariyoshi N., Okada K., Nakasa H., Nakazawa K., Kitada M. CYP1A1 is a major enzyme responsible for the metabolism of granisetron in human liver microsomes. Curr. Drug Metab. 2005; 6: 469–480
  • Nakamura K., Ariyoshi N., Iwatsubo T., Fukunaga Y., Higuchi S., Itoh K., Shimada N., Nagashima K., Yokoi T., Yamamoto K., Horiuchi R., Kamataki T. Inhibitory effects of nicardipine to cytochrome P450 (CYP) in human liver microsomes. Biol. Pharm. Bull. 2005; 28: 882–885
  • Narimatsu S., Kariya S., Isozaki K., Ohmori S., Kitada M., Hosokawa S., Masubichi Y., Suzuki T. Involvement of CYP2D6 in oxidative metabolism of cinnarizine and flunarizine in human liver microsomes. Biochem. Bioph. Res. Com. 1993; 3: 1262–1268
  • Narimatsu S., Takemi C., Kuramoto S., Tsuzuki D., Hichiya H., Tamagake K., Yamamoto S. Stereoselectivity in the oxidation of bufuralol, a chiral substrate, by human cytochromes P450. Chirality 2003; 15: 333–339
  • Nelson S. D., Bruschi S. A. Mechanisms of acetaminophen-induced liver disease. Drug-Induced Liver Disease, N. Kaplowitz, L. D. DeLeve. Informa Healthcare, New York 2007; 353–388
  • Ngui J. S., Tang W., Stearns R. A., Shou M., Miller R. R., Zhang Y., Lin J. H., Baillie T. A. Cytochrome P450 3A4-mediated interaction of diclofenac and quinidine. Drug Metab. Dispos. 2000; 28: 1043–1050
  • Niwa T., Sato R., Yabusaki Y., Ishibashi F., Katagiri M. Contribution of human hepatic cytochrome P450s and steroidogenic CYP17 to the N-demethylation of aminopyrine. Xenobiotica 1999; 29: 187–193
  • Notley L. M., Crewe K. H., Taylor P. J., Lennard M. S., Gillam E. M. J. Characterization of the human cytochrome P450 forms involved in metabolism of tamoxifen to its alpha-hydroxy and alpha,4-dihydroxy derivatives. Chem. Res. Toxicol. 2005; 18: 1611–1618
  • Oda Y., Imaoka S., Nakahira Y., Asada A., Fujimori M., Fujita S., Funae Y. Metabolism of lidocaine by purified rat-liver microsomal cytochrome-P-450 isozymes. Biochem. Pharmacol. 1989; 38: 4439–4444
  • Okita R. T., Okita J. R. Cytochrome P450 4A fatty acid omega hydroxylases. Curr. Drug Metab. 2001; 2: 265–281
  • Oldham H. G., Clarke S. E. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+) and S(-) carvedilol. Drug Metab. Dispos. 1997; 25: 970–977
  • Olesen O. V., Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Brit. J. Clin. Pharmacol. 2000; 50: 563–571
  • Ortiz de Montellano P. R. Cytochromes P450: Structure, mechanism and biochemistry. Kluwer Academic/Plenum, New York 2005
  • Pan L., Belpaire F. M. In vitro study on the involvement of CYP1A2, CYP2D6 and CYP3A4 in the metabolism of haloperidol and reduced haloperidol. Eur. J. Clin. Pharmacol. 1999; 55: 599–604
  • Panesar S. K., Bandiera S. M., Abbott F. S. Comparative effects of carbamazepine and carbamazepine-10,11-epoxide on hepatic cytochromes P450 in the rat. Drug Metab. Dispos. 1996; 24: 619–627
  • Park S. B., Jacob P. J., Benowitz N. L., Cashman J. R. Stereoselective metabolism of (S)-(-)-nicotine in humans—Formation of trans-(S)-(-)-nicotine N-1'-oxide. Chem. Res. Toxicol. 1993; 6: 880–888
  • Parkinson A. Biotransformation of xenobiotics. Casarett and Doull's Toxicology: The Basic Science of Poisons, C. D. Klaassen. McGraw-Hill, New York 2001; 172–191
  • Patki K. C., Von Moltke L. L., Greenblatt D. J. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: Role of CYP3A4 and CYP3A5. Drug Metab. Dispos. 2003; 31: 938–944
  • Peters J. M., Morishima H., Ward J. H., Coakley C. J., Kimura S., Gonzalez F. J. Role of CYP1A2 in the toxicity of long-term phenacetin feeding in mice. Toxicol. Sci. 1999; 50: 82–89
  • Peterson L. A., Cummings M. E., Vu C. C., Matter B. A. Glutathione trapping to measure microsomal oxidation of furan to cis-2-butene-1,4-dial. Drug Metab. Dispos. 2005; 33: 1453–1458
  • Picard N., Cresteil T., Djebli N., Marquet P. In vitro metabolism study of buprenorphine: Evidence for new metabolic pathways. Drug Metab. Dispos. 2005; 33: 689–695
  • Prior T. I., Pierre S. C., Tibbo P., Baker G. B. Drug metabolism and atypical antipsychotics. Eur. Neuropsychopharm. 1999; 9: 301–309
  • Prueksaritanont T., Gorham L. M., Ma B., Liu L., Yu X., Zhao J. J., Slaughter D. E., Arison B. H., Vyas K. P. In Vitro metabolism of simvastatin in humans [sbt]identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab. Dispos. 1997; 25: 1191–1199
  • Prueksaritanont T., Ma B., Yu N. The human hepatic metabolism of simvastatin hydroxy acid is mediated primarily by CYP3A, and not CYP2D6. Brit. J. Clin. Pharmacol. 2003; 56: 120–124
  • Ramanathan R., Alvarez N., Su A. D., Chowdury S., Alton K., Stauber K., Patrick J. Metabolism and excretion of loraditine in male and female mice, rats and monkeys. Xenobiotica. 2005; 35: 155–189
  • Rasmussen B. B., Nielsen T. L., Brosen K. Fluvoxamine inhibits the CYP2C19-catalysed metabolism of proguanil in vitro. Pharmacokin. Dispos. 1998; 54: 735–740
  • Relling M. V., Nemec J., Schuetz E. G., Schuetz J. D., Gonzalez F. J., Korzekwa K. R. O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol. Pharmacol. 1994; 45: 352–358
  • Ren S., Yang J., Kalhorn T. F., Slattery J. T. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res. 1997; 57: 4229–4235
  • Rendic S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 2002; 34: 83–448
  • Rettie A. E., Korzekwa K. R., Kunze K. L., Lawrence R. F., Eddy A. C., Aoyama T., Gelboin H. V., Gonzalez F. J., Trager W. F. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: A role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. 1992; 5: 54–59
  • Salonen J. S., Nyman L., Boobis A. R., Edwards R. J., Watts P., Lake B. G., Price R. J., Renwick A. B., Gomez-Lechon M., Castell J. V., Ingelman-Sundberg M., Hidestrand M., Guillouzo A., Corcos L., Goldfarb P. S., Lewis D. F. V., Taavitsainen P., Pelkonin O. Comparative studies on the cytochrome P450-associated metabolism and interaction potential of selegiline between human liver-derived in vitro systems. Drug Metab. Dispos. 2003; 31: 1093–1102
  • Sanwald P., David M., Dow J. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of dolasetron—comparison with other indole-containing 5-HT3 antagonists. Drug Metab. Dispos. 1996; 24: 602–609
  • Sauer J. M., Ponsler G. D., Mattiuz E. L., Long A. J., Witcher J. W., Thomasson H. R., Desante K. A. Disposition and metabolic fate of atomoxetine hydrochloride: The role of CYP2D6 in human disposition and metabolism. Drug Metab. Dispos. 2003; 31: 98–107
  • Schnellman R. G., Vickers A. E. M., Sipes I. G. Metabolism and disposition of polychlorinated biphenyls. Rev. Biochem. Toxicol. 1985; 7: 247–282
  • Schrenk D., Gant T. W., Michalke A., Orzechowski A., Silverman J. A., Battula N., Thorgeirsson S. S. Metabolic activation of 2-acetylaminofluorene is required for induction of multidrug resistace gene expression in rat liver cells. Carcinogenesis 1994; 15: 2541–2546
  • Shimada T., Hayes C. L., Yamazaki H., Amin S., Hecht S. S., Guengerich F. P., Sutter T. R. Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res. 1996; 56: 2979–2984
  • Shimada T., Fujii-Kuriyama Y. Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci. 2003; 95: 1–6
  • Shimizu M., Takatori K., Kajiwara M., Ogata H. Isolation of a major metabolite (i-OHAP) of aprindine and its identification as N-[3-(N, N-diethylamino)propyl]-N-phenyl-2-aminoindan-5-ol. Biol. Pharm. Bull. 1998; 21: 530–534
  • Simpson A. E. C. M. The cytochrome P450 4 (CYP4) family. Gen. Pharmacol. 1997; 28: 351–359
  • Someya T., Suzuki Y., Shimoda K., Hirokane G., Morita S., Yokono A., Inoue Y., Takahashi S. The effect of cytochrome P450 2D6 genotypes on haloperidol metabolism: A preliminary study in a psychiatric population. Psychiat. Clin. Neuros. 1999; 53: 593–597
  • Song Q., Naidong W. Analysis of omeprazole and 5-oh omeprazole in human plasma using hydrophilic interaction chromatography with tandem mass spectrometry (HILIC-MS/MS)–Eliminating evaporation and reconstitution steps in 96-well liquid/liquid extraction. J. Chromatogr B 2006; 830: 135–142
  • Sorensen L. B., Sorensen R. N., Miners J. O., Somogyi A. A., Grgurinovich N., Birkett D. J. Polymorphic hydroxylation of perhexiline in vitro. Brit. J. Clin. Pharmacol. 2003; 55: 635–638
  • Spracklin D. K., Hankins D. C., Fisher J. M., Thummel K. E., Kharasch E. D. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J. Pharmacol. Exp. Ther. 1997; 281: 400–411
  • Steensma A., Beamand J. A., Walters D. G., Price R. J., Lake B. G. Metabolism of coumarin and 7-ethoxycoumarin by rat, mouse, guinea-pig, cynomolgus monkey and human precision-cut liver slices. Xenobiotica 1994; 24: 893–907
  • Streel B., Zimmer C., Sibenaler R., Ceccato A. Simultaneous determination of nifedipine and dehydronifedipine in human plasma by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B. 1998; 720: 119–128
  • Tang C., Shou M., Mei Q., Rushmore T. H., Rodrigues A. D. Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J. Pharmacol. Exp. Ther. 2000; 293: 453–459
  • Tang J., Cao Y., Rose R. L., Brimfield A. A., Dai D., Goldstein J. A., Hodgson E. Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse and rat liver microsomes. Drug Metab. Dispos. 2001; 29: 1201–1204
  • Tang W. The metabolism of diclofenac - enzymology and toxicology perspectives. Curr. Drug Metab. 2003; 4: 319–329
  • Taniguchi R., Kumai T., Matsumoto N., Watanabe M., Kamio K., Suzuki S., Kobayashi S. Utilization of human liver microsomes to explain individual differences in paclitaxel metabolism by CYP2C8 and CYP3A4. J. Pharmacol. Sci. 2005; 97: 83–90
  • Tassaneeyakul W., Birkett D. J., Veronese M. E., McManus M. E., Tukey R. H., Quattrochi L. C., Gelboin H. V., Miners J. O. Specificity of substrate and inhibitor probes for human cytochromes-P450 1A1 and 1A2. J. Pharmacol. Exp. Ther. 1993; 265: 401–407
  • Thomas J., Meffin P. Aromatic hydroxylation of lidocaine and mepivacaine in rats and humans. J. Med. Chem. 1972; 15: 1046–1049
  • Tjia J. F., Colbert J., Back D. J. Theophylline metabolism in human liver microsomes: Inhibition studies. J. Pharmacol. Exp. Ther. 1996; 276: 912–917
  • Toriba A., Nakamura H., Chetiyanukornkul T., Kizu R., Makino T., Nakazawa H., Yokoi T., Hayakawa K. Method for determining monohydroxybenzo[a]pyrene isomers using column-switching high-performance liquid chromatography. Anal. Biochem. 2003; 312: 14–22
  • Tracy T. S., Marra C., Wrighton S. A., Gonzalez F. J., Korzekwa K. R. Involvement of multiple cytochrome P450 isoforms in naproxen O-demethylation. Eur. J. Clin. Pharmacol. 1997; 52: 293–298
  • Tracy T. S., Korzekwa K. R., Gonzalez F. J., Wainer I. W. Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Brit. J. Clin. Pharmacol. 1999; 47: 545–552
  • Trube G., Netzer R. Dextromethorphan: Cellular effects reducing neuronal hyperactivity. Epilepsia. 1994; 35: S62–67
  • Tsuchiya Y., Nakajima M., Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005; 227: 115–124
  • Urban G., Speerschneider P., Dekant W. Metabolism of the chlorofluorocarbon substitute 1,1-dichloro-2,2,2-trifluoroethane by rat and human liver microsomes: The role of cytochrome P450 2E1. Chem. Res. Toxicol. 1994; 7: 170–176
  • van den Brink N. W., Bosveldt A. B. T. C. Alkoxyresorufin-O-deethylase activities and polychlorinated biphenyl patterns in shrews as biomarkers in environmental risk assessments: Sensitivity and specificity. Environ. Sci. Technol. 2005; 39: 7337–7343
  • Verschoyle R. D., Martin J., Dinsdale D. Selective inhibition and induction of CYP activity discriminates between the isoforms responsible for the activation of butylated hydroxytoluene and naphthalene in mouse lung. Xenobiotica 1997; 27: 853–864
  • von Moltke L. L., Greenblatt D. J., Duan S. X., Schmider J. S., Wright C. E., Harmatz J. S., Shader R. I. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology 1997; 132: 402–407
  • Von Weymarn L. B., Murphy S. E. CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica 2003; 33: 73–81
  • von Weymarn L. B., Brown K. M., Murphy S. E. Inactivation of CYP2A6 and CYP2A13 during nicotine metabolism. J. Pharmacol. Exp. Ther. 2006; 316: 295–303
  • Walsky R. L., Orbach R. S. Validated assays for human cytochrome P450 activities. Drug Metab. Dispos. 2004; 32: 647–660
  • Wang J. S., Backman J. T., Taavitsainen P., Neuvonen P. J., Kivisto K. T. Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab. Dispos. 2000; 28: 959–965
  • Wang R. W., Newton D. J., Scheri T. D., Lu A. Y. H. Human cytochrome P450 3A4-catalyzed testosterone 6b-hydroxylation and erythromycin N-demethylation. Drug Metab. Dispos. 1997; 25: 502–507
  • Wang Y., Yang C. L., Wang H. M., Han K. L., Shaik S. A new mechanism for ethanol oxidation mediated by cytochrome P450 2E1: Bulk polarity of the active site makes a difference. Chembiochem. 2007; 8: 277–281
  • Wenker M. A., Kezic S., Monster A. C., De Wolff F. A. Metabolism of styrene in the human liver in vitro: Interindividual variation and enantioselectivity. Xenobiotica 2001; 31: 61–72
  • West R. Bupropion SR for smoking cessation. Expert Opin. Pharmacol. 2003; 4: 533–540
  • Wester M. R., Lasker J. M., Johnson E. F., Raucy J. L. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab. Dispos. 2000; 28: 354–359
  • Wienkers L. C., Wurden C. J., Storch E., Kunze K. L., Rettie A. E., Trager W. F. Formation of (R)-8-hydroxywarfarin in human liver microsomes - a new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab. Dispos. 1996; 24: 610–614
  • Xue L., Wang H. F., Wang Q., Szklarz G. D., Domanski T. L., Halpert J. R., Correia M. A. Influence of P450 3A4 SRS-2 residues on cooperativity and/or regioselectivity of aflatoxin B(1) oxidation. Chem. Res. Toxicol. 2001; 14: 483–491
  • Yamamoto I., Watanabe K., Matsunaga T., Kimura T., Funahashi T., Yoshimura H. Pharmacology and toxicology of major constituents of marijuana - on the metabolic activation of cannabinoids and its mechanism. J. Toxicol. - Toxin Rev. 2003; 22: 577–589
  • Yamanaka H., Nakajima M., Fukami T., Sakai H., Nakamura A., Katoh M., Takamiya M., Aoki Y., Yokoi T. CYP2A6 and CYP2B6 are involved in nornicotine formation from nicotine in humans: Interindividual differences in these contributions. Drug Metab. Dispos. 2005; 33: 1811–1818
  • Yamazaki H., Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch. Biochem. Biophys. 1997; 346: 161–169
  • Yamazaki H., Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem. Pharmacol. 1997; 54: 1195–1203
  • Yamazaki H., Hatanaka N., Kizu R., Hayakawa K., Shimada N., Guengerich F. P., Nakajima M., Yokoi T. Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochromes P450 1A1, 1A2 and 1B1. Mutat. Res. 2000; 472: 129–138
  • Yang T. J., Sai Y., Krausz K. W., Gonzalez F. J., Gelboin H. V. Inhibitory monoclonal antibodies to human cytochrome P450 1A2: Analysis of phenacetin O-deethylation in human liver. Pharmacogenetics. 1998; 8: 375–382
  • Yang T. J., Krausz K. W., Yang S., Gonzalez F. J., Gelboin H. V. Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism. Drug Metab. Dispos. 1999; 27: 102–109
  • Yasar U., Forslund-Bergengren C., Tybring G., Dorado P., Llerena A., Sjoqvist F., Eliasson E., Dahl M. L. Pharmacokinetics of losartan and its metabolite E-3174 in relation to the CYP2C9 genotype. Clin. Pharmacol. Ther. 2002; 71: 89–98
  • Yoshii K., Kobayashi K., Mihoko T., Masayoshi T., Shimada N., Chiba K. Identification of human cytochrome P450 isoforms involved in the 7-hydroxylation of chlorpromazine by human liver microsomes. Life Sci. 2000; 67: 175–184
  • Yue Q. Y., Sawe J. Different effects of inhibitors on the O- and N-demethylation of codeine in human liver microsomes. Eur. J. Clin. Pharmacol. 1997; 52: 41–47
  • Yumibe N., Huie K., Chen K., Snow M., Clement R. P., Cayen M. N. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine : Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem. Pharmacol. 1996; 51: 165–172
  • Zhang T., Zhu Y., Gunaratna C. Simultaneous determination of metabolites from multiple cytochrome P450 probe substrates by gradient liquid chromatography with UV detection. Current Separ. 2003; 20: 87–91
  • Zhang Z. Y., King B. M., Wong Y. N. Quantitative liquid chromatography/mass spectrometry/mass spectrometry warfarin assay for in vitro cytochrome P450 sudies. Anal. Biochem. 2001; 298: 40–49
  • Zhou H., Tong Z., McLeod J. F. “Cocktail” approaches and strategies in drug development: Valuable tool or flawed science?. J. Clin. Pharmacol. 2004; 44: 120–134

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.