490
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Structural Biology and Biochemistry of Cytochrome P450 Systems in Mycobacterium tuberculosis

&
Pages 427-446 | Published online: 09 Oct 2008

REFERENCES

  • Ahmad Z., Sharma S., Khuller G. K. In vitro and ex vivo antimycobacterial potential of azole drugs against Mycobacterium tuberculosis H37Rv. FEMS Microbiol. Lett. 2005; 251: 19–22
  • Ahmad Z., Sharma S., Khuller G. K. Azole antifungals as novel chemotherapeutic agents against murine tuberculosis. FEMS Microbiol. Lett. 2006a; 261: 181–186
  • Ahmad Z., Sharma S., Khuller G. K., Singh P., Faujdar J., Katoch V. M. Antomycobacterial activity of econazole against multidrug-resistant strains of Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 2006b; 28: 543–544
  • Aoyama Y., Horiuchi T., Gotoh O., Noshiro M., Yoshida Y. CYP51-like gene of Mycobacterium tuberculosis actually encodes a P450 similar to eukaryotic CYP51. J. Biochem. 1998; 124: 694–696
  • Barry C. E., Crick D. C., McNeil M. R. Targeting the formation of the cell wall core of M. tuberculosis. Infect. Disord. Drug Targets 2007; 7: 182–202
  • Bellamine A., Mangla A. T., Nes W. D., Waterman M. R. Characterization and catalytic properties of the sterol 14alpha-demethylase from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 1999; 96: 8937–8942
  • Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 2002; 43: 717–731
  • Betts J. C., McLaren A., Lennon M. G., Kelly F. M., Lukey P. T., Blakemore S. J., Duncan K. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimcrob. Agents Chemother. 2003; 47: 2903–2913
  • Bossi R. T., Aliverti A., Raimondi D., Fischer F., Zanetti G., Ferrari D., Tahallah N., Maier C. S., Heck A. J., Rizzi M., Mattevi A. A covalent modification of NADP+ revealed by the atomic resolution structure of FprA, a Mycobacterium tuberculosis oxidoreductase. Biochemistry 2002; 41: 8807–8818
  • Brennan P. J., Crick D. C. The cell-wall core of Mycobacterium tuberculosis in the context of drug discovery. Curr. Top. Med. Chem. 2007; 7: 475–488
  • Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu. Rev. Biochem. 1995; 64: 29–63
  • Brennan P. J., Vissa V. D. Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective. Mycobacterium leprae Lepr Rev, 72: 415–428
  • Camus J. C., Pryor M. J., Médigue C., Cole S. T. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002; 148: 2967–2973
  • Casali N., Riley L. W. A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 2007; 8: 60
  • Chang J. C., Harik N. S., Liao R. P., Sherman D. R. Identification of mycobacterial genes that alter growth and pathology in macrophages and in mice. J. Infect. Dis. 2007; 196: 788–795
  • Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd, Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M. A., Rajandream M. A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J. E., Taylor K., Whitehead S., Barrell B. G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393: 537–544
  • Daffé M., Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 1999; 79: 153–169
  • Davydov R., Perera R., Jin S., Yang T. C., Bryson T. A., Sonon M., Dawson J. H., Hoffman B. M. Substrate modulation of the properties and reactivity of the oxy-ferrous and hydroperoxo-ferric intermediates of cytochrome P450cam as shown by cryoreduction-EPR/ENDOR spectroscopy. J. Am. Chem. Soc. 2005; 127: 1403–1413
  • Denisov I. G., Makris T. M., Sligar S. G., Schlichting I. Structure and chemistry of cytochrome P450. Chem. Rev. 2005; 105: 2253–2277
  • Gamieldien J., Ptitsyn A., Hide W. Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation. Trends Genet. 2002; 18: 5–8
  • Garnier T., Eiglmeier K., Camus J. C., Medina N., Mansoor H., Pryor M., Duthoy S., Grondin S., Lacroix C., Monsempe C., Simon S., Harris B., Atkin R., Doggett J., Mayes R., Keating L., Wheeler P. R., Parkhill J., Barrell B. G., Cole S. T., Gordon S. V., Hewinson R. G. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 2003; 100: 7877–7882
  • Gordon S. V., Brosch R., Billault A., Garnier T., Eiglmeier K., Cole S. T. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol. Microbiol. 1999; 32: 643–655
  • Gradmann C. Robert Koch and the white death: from tuberculosis to tuberculin. Microbes Infect. 2006; 8: 294–301
  • Hsu M. H., Savas U., Griffin K. J., Johnson E. F. Human cytochrome P450 family 4 enzymes: function, genetic variation and regulation. Drug Metab. Rev. 2007; 39: 515–538
  • Janin Y. L. Antituberculosis drugs: ten years of research. Bioorg. Med. Chem. 2007; 15: 2479–2513
  • Kaul D., Anand P. K., Verma I. Cholesterol-sensor initiates M. tuberculosis entry into human macrophages. Mol. Cell Biochem. 2004; 258: 219–222
  • Kendall S. L., Rison S. C., Movahedzadeh F., Frita R., Stoker N. G. What do microarrays really tell us about M. tuberculosis?. Trends Microbiol. 2004; 12: 537–544
  • Laurenzi M., Ginsberg A., Spigelman M. Challenges associated with current and future TB treatment. Infect. Disord. Drug Targets 2007; 7: 105–119
  • Lepesheva G. I., Waterman M. R. Sterol 14alpha-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta 2007; 1770: 467–477
  • Lety M. A., Nair S., Berche P., Escuyer V. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimcrob. Agents Chemother. 1997; 41: 2629–2633
  • Leys D., Mowat C. G., McLean K. J., Richmond A., Chapman S. K., Walkinshaw M. D., Munro A. W. Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 Å reveals novel features of cytochrome P450. J. Biol. Chem. 2003; 278: 5141–5147
  • McLean K. J., Cheesman M. R., Rivers S. L., Richmond A., Leys D., Chapman S. K., Reid G. A., Price N. C., Kelly S. M., Clarkson J., Smith W. E., Munro A. W. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from. Mycobacterium tuberculosis. J. Inorg. Biochem. 2002b; 91: 527–541
  • McLean K. J., Clift D., Lewis D. G., Sabri M., Balding P. R., Sutcliffe M. J., Leys D., Munro A. W. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol. 2006b; 14: 220–228
  • McLean K. J., Dunford A. J., Neeli R., Munro A. W. Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems. Arch. Biochem. Biophys. 2007; 464: 228–240
  • McLean K. J., Marshall K. R., Richmond A., Hunter I. S., Fowler K., Kieser T., Gurcha S. S., Besra G. S., Munro A. W. Azole antifungals are potent inhibitors of cytochrome P450 mono-oxygenases and bacterial growth in mycobacteria and streptomycetes. Microbiology 2002a; 148: 2937–2949
  • McLean K. J., Scrutton N. S., Munro A. W. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. Biochem. J. 2003; 372: 317–327
  • McLean K. J., Warman A. J., Seward H. E., Marshall K. R., Girvan H. M., Cheesman M. R., Waterman M. R., Munro A. W. Biophysical characterization of the sterol demethylase P450 from Mycobacterium tuberculosis, its cognate ferredoxin, and their interactions. Biochemistry 2006a; 45: 8427–8443
  • Morlock G. P., Metchock B., Sikes D., Crawford J. T., Cooksey R. C. ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 2003; 47: 3799–3805
  • Munro A. W., Girvan H. M., McLean K. J. Variations on a (t)heme-novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat. Prod. Rep. 2007a; 24: 585–609
  • Munro A. W., Girva n. H. M., McLean K. J. Cytochrome P450-redox partner fusion enzymes. Biochim. Biophys. Acta 2007b; 1770: 345–359
  • Munro A. W., Leys D. G., McLean K. J., Marshall K. R., Ost T. W., Daff S., Miles C. S., Chapman S. K., Lysek D. A., Moser C. C., Page C. C., Dutton P. L. P450 BM3: the very model of a modern flavocytochrome. Trends Biochem. Sci. 2002; 27: 250–257
  • Munro A. W., Lindsay J. G. Bacterial cytochromes P-450. Mol. Microbiol. 1996; 20: 1115–1125
  • Neeli R., Sabri M., McLean K. J., Dunford A. J., Scrutton N. S., Leys D., Munro A. W. Tryptophan 359 regulates flavin thermodynamics and coenzyme selectivity in. Mycobacterium tuberculosis FprABiochem. J 2008, (in press)
  • Nelson D. R. Cytochrome P450 nomenclature, 2004. Methods Mol. Biol. 2004; 320: 1–10
  • Ogura H., Nishida C. R., Hoch U. R., Perera R., Dawson J. H., Ortiz de Montellano P. R. EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry 2004; 43: 14712–14721
  • Ouellet H., Podust L. M., Ortiz de Montellano P. R. Mycobacterium tuberculosis CYP130: Crystal structure, biophysical characterization, and interactions with antifungal azole drugs. J. Biol. Chem 2008, in press
  • Podust L. M., Poulos T. L., Waterman M. R. Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 2001; 98: 3068–3073
  • Podust L. M., Yermalitskaya L. V., Lepesheva G. I., Podust V. N., Dalmasso E. A., Waterman M. R. Estriol bound and ligand-free structures of sterol 14alpha-demethylase. Structure 2004; 12: 1937–1945
  • Recchi C., Sclavi B., Rauzier J., Gicquel B., Reyrat J. M. Mycobacterium tuberculosis Rv1395 is a class III transcriptional regulator of the AraC family involved in cytochrome P450 regulation. J. Biol. Chem. 2003; 278: 33763–33773
  • Sassetti C. M., Boyd D. H., Rubin E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 2001; 98: 12712–12717
  • Sassetti C. M., Rubin E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci USA 2003; 100: 12989–12994
  • Schnappinger D., Ehrt S., Voskuil M. I., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D., Nathan C., Schoolnik G. K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med. 2003; 198: 693–704
  • Seward H. E., Roujeinikova A., McLean K. J., Munro A. W., Leys D. Crystal structure of the Mycobacterium tuberculosis P450 CYP121-fluconazole complex reveals new azole drug-P450 binding mode. J. Biol. Chem. 2006; 281: 39437–39443
  • Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 2002; 148: 3129–3138
  • Vilchèze C., Jacobs W. R., Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annu Rev. Microbiol. 2007; 61: 35–30
  • Vilchèze C., Wang F., Arai M., Hazbón M. H., Colangeli R., Kremer L., Weisbrod T. R., Alland D., Sacchettini J. C., Jacobs W. R., Jr. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med. 2006; 12: 1027–1029
  • http://www.who.int/tb/publications/1994/en/index.html, WHO publication no. WHO/TB/94.177 (1994). TB: A global emergency, WHO report on the TB epidemic, 1994. Published by the World Health Organization
  • Van der Geize R., Yam K., Heuser T., Wilbrink M. H., Hara H., Anderton M. C., Sim E., Dijkhuizen L., Davies J. E., Mohn W. W., Eltis L. D. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 2007; 104: 1947–1952
  • Vergne I., Chua J., Singh S. B., Deretic V. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Develop. Biol. 2004; 20: 367–394
  • Waterman M. R., Lepesheva G. I. Sterol 14a-demethylase, an abundant and essential mixed-function oxidase. Biochem. Biophys. Res. Commun. 2005; 338: 418–422
  • Zanno A., Kwiatkowski N., Vaz A. D., Guardiola-Diaz H. M. MT FdR: a ferredoxin reductase from M. tuberculosis that couples to MT CYP51. Biochim. Biophys Acta 2005; 1707: 157–169
  • Zhao X., Yu H., Yu S., Wang F., Sacchettini J. C., Magliozzo R. S. Hydrogen peroxide-mediated isoniazid activation catalyzed by Mycobacterium tuberculosis catalase-peroxidase (KatG) and its S315T mutant. Biochemistry 2006; 45: 4131–4140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.