476
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Mechanism and Role of Covalent Heme Binding in the CYP4 Family of P450 Enzymes and the Mammalian Peroxidases

Pages 405-426 | Published online: 09 Oct 2008

REFERENCES

  • Adas F., Salaun J. P., Berthou F., Picart D., Simon B., Amet Y. Requirement for ω and (ω-1)-hydroxylations of fatty acids by human cytochromes P450 2E1 and 4A11. J. Lipid Res. 1999; 40: 1990–1997
  • Baer B. R., Schuman J. T., Campbell A. P., Cheesman M. J., Nakano M., Moguilevsky N., Kunze K. L., Rettie A. E. Sites of covalent attachment of CYP4 enzymes to heme: evidence for microheterogeneity of P450 heme orientation. Biochemistry 2005; 44: 13914–13920
  • Baer B. R., Kunze K. L., Rettie A. E. Mechanism of formation of the ester linkage between heme and Glu310 of CYP4B1: 18O protein labeling studies. Biochemistry 2007; 46: 11598–11605
  • Baer B. R., Rettie A. E. CYP4B1: an enigmatic P450 at the interface between xenobiotic and endobiotic metabolism. Drug. Metab. Rev. 2006; 38: 451–476
  • Barker P. D., Ferguson S. J. Still a puzzle: why is haem covalently attached in c-type cytochromes?. Structure 1999; 7: R281–R290
  • Battistuzzi G., Bellei M., Zederbauer M., Furtmüller P. G., Sola M., Obinger C. Redox thermochemistry of the Fe(III)/Fe(II) couple of human myeloperoxidase in its high-spin and low-spin forms. Biochemistry 2006; 45: 12750–12755
  • Berglund G., Carlsson G., Smith A., Szoke H., Henrikson A., Hadju J. The catalytic pathway of horseradish peroxidase at high resolution. Nature 2002; 417: 463–468
  • Capdevila J. H., Holla V. R., Falck J. R. Cytochrome P450 and the metabolism and bioactivation of arachidonic acid and eicosanoids. Cytochrome P450: Structure, Mechanism, and Biochemistry,3rd, P. R. Ortiz de Montellano. Kluwer Academic/Plenum. 2005; 531–551
  • Capdevila J. H., Falck J. R., Imig J. D. Roles of the cytochrome P450 arachidonic acid monooxygenases in the control of systemic blood pressure and experimental hypertension. Kidney International 2007; 72: 683–689
  • Chefson A., Zhao J., Auclair K. Replacement of natural cofactors by selected hydrogen peroxide donors or organic peroxides results in improved activity for CYP3A4 and CYP2D6. ChemBioChem 2006; 7: 916–919
  • Colas C., Kuo J. M., Ortiz de Montellano P. R. Asp-225 and Glu375 in autocatalytic attachment of the prosthetic heme group of lactoperoxidase. J. Biol. Chem. 2002; 277: 7191–7200
  • Colas C., Ortiz de Montellano P. R. Horseradish peroxidase mutants that autocatalytically modify their prosthetic heme group. Insights into mammalian peroxidase heme-protein covalent bonds. J. Biol. Chem. 2004; 279: 24131–24140
  • De Visser S. P., Kumar D., Cohen S., Shacham R., Shaik S. A predictive pattern of computer barriers for C-H hydroxylation by compound I of cytochrome P450. J. Am. Chem. Soc. 2004; 126: 8362–8363
  • Denisov I. G., Makris T. M., Sligar S. G., Schlichting I. Structure and chemistry of cytochrome P450. Chem. Rev. 2005; 105: 2253–2277
  • DePillis G. D., Ozaki S., Kuo J. M., Maltby D. A., Ortiz de Montellano P. R. Autocatalytic processing of heme by lactoperoxidase produces the native protein-bound prosthetic group. J. Biol. Chem. 1997; 272: 8857–8860
  • Dierks E. A., Davis C. S., Ortiz de Montellano P. R. Glu-320 and Asp-323 are dterminants of the CYP4A1 hydroxylation regiospecificity and resistance to inactivation by 1-aminobenzotriazole. Biochemistry 1998; 37: 1839–1847
  • Escalante B., Falck J. R., Yadagiri P., Sun L. M., Laniado-Schwartzman M. 19(S)-Hydroxyeicosatetrenoic acid is a potent stimulator of renal Na+-K+-ATPase. Biochem. Biophys. Res. Commun. 1988; 152: 1269–1274
  • Fayadat L., Niccoli-Sire P., Lanet J., Franc J.-L. Role of heme in intracellular trafficking of thyroperoxidase and involvement of H2O2 generated at the apical surface of thyroid cells in autocatalytic covalent heme binding. J. Biol. Chem. 1999; 274: 10533–10538
  • Fiedler T. J., Davey C. A., Fenna R. E. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution. J. Biol. Chem. 2000; 275: 11964–11971
  • Furtmüller P.G., Zederbauer M., Jantschko W., Helm J., Bogner M., Jakopitsch C., Obinger C. Active site structure and catalytic mechanisms of human peroxidases. Arch. Biochem. Biophys. 2006; 445: 199–213
  • Gajhede M., Schuller D. J., Hendriksen A., Smith A. T., Poulos T. L. Crystal structure of horseradish peroxidase C at 2.15 Å resolution. Nature Struct. Biol. 1997; 4: 1032–1038
  • Girvan H. M., Marshall K. R., Lawson R. J., Leys D., Joyce M. G., Clarkson J., Smith W. E., Cheesman M. R., Munro A. W. Flavocytochrome P450 BM3 mutant A264E undergoes substrate-dependent formation of a novel heme iron ligand set. J. Biol. Chem. 2004; 279: 23274–23286
  • He X., Cryle M. J., De Voss J. J., Ortiz de Montellano P. R. Calibration of the channel that determines the ω-hydroxylation regiospecificity of cychrome P4504A1. J. Biol. Chem. 2005; 280: 22697–22705
  • Henne K. R., Fisher M. B., Iyer K. R., Lang D. H., Trager W. F., Rettie A. E. Active site characteristics of CYP4B1 probed with aromatic ligands. Biochemistry 2001b; 40: 8597–8605
  • Henne K. R., Kunze K. L., Zheng Y. M., Christmas P., Soberman R. J., Rettie A. E. Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry 2001; 40: 12925–12931
  • Hoch U., Ortiz de Montellano P. R. Covalently-linked heme in cytochrome P4504A fatty acid hydroxylases. J. Biol. Chem. 2001; 276: 11339–11346
  • Hoch U., Zhang Z., Kroetz D. L., Ortiz de Montellano P. R. Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid ω-hydroxylases. Arch. Biochem. Biophys. 2000; 373: 63–71
  • Huang L., Colas C., Ortiz de Montellano P. R. Oxidation of carboxylic acids by horseradish peroxidase results in prosthetic heme modification and inactivation. J. Am. Chem. Soc. 2004; 126: 12865–12873
  • Huang L., Ortiz de Montellano P. R. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation. Arch. Biochem. Biophys. 2006; 446: 77–83
  • Huang L., Wojciechowski G., Ortiz de Montellano P. R. Prosthetic heme modification during halide ion oxidation. Demonstration of chloride oxidation by horseradish peroxidase. J. Am. Chem. Soc. 2005; 127: 5345–5353
  • Huang L., Wojciechowski G., Ortiz de Montellano P. R. Role of heme-protein covalent bonds in mammalian peroxidases. Protection of the heme by a single engineered heme-protein link in horseradish peroxidase. J. Biol. Chem. 2006; 281: 18983–18988
  • Imig J. D., Zou A. P., Stec D. E., Harder D. R., Falck J. R., Roman R. J. Formation and actions of 20-hydroxyeicosatetrenoic acid in rat renal arterioles. Am. J. Physiol. 1996; 270: R217–227
  • Joyce M. G., Girvan H. M., Munro A. W., Leys D. A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme. J. Biol. Chem. 2004; 279: 23287–23293
  • Kim D., Cryle M. J., De Voss J. J., Ortiz de Montellano P. R. Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch. Biochem. Biophys. 2007; 464: 213–220
  • Kooter I. M., Moguilevsky N., Bollen A., Sijtsema N. M., Otto C., Wever R. Site-directed mutagenesis of Met243, a residue of myeloperoxidase involved in binding of the prosthetic group. J. Biol. Inorg. Chem. 1997b; 2: 191–197
  • Kooter I. M., Moguilevsky N., Bollen A., van der Veen L. A., Otto C., Dekker H. L., Wever R. The sulfonium ion linkage in myeloperoxidase. Direct spectroscopic detection by isotopic labeling and effect of mutation. J. Biol. Chem. 1999a; 274: 26794–26802
  • Kooter I. M., Moguilevsky N., Bollen A., Sijtsema N. M., Otto C., Dekker H. L., Wever R. Characterization of the Asp94 and Glu242 mutants in myeloperoxidase, the residues linking the heme group via ester bonds. Eur. J. Biochem. 1999b; 264: 211–217
  • Kooter I. M., Pierik A. J., Merkx M., Averill B. A., Moguilevsky N., Bollen A., Wever R. Difference Fourier transform infrared evidence for ester bonds linking the heme group in myeloperoxidase, lactoperoxidase, and eosinophil peroxidase. J. Am. Chem. Soc. 1997a; 199: 11542–11543
  • Kranz R., Lill R., Goldman B., Bonnard G., Merchant S. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Molec. Microbiol. 1998; 29: 383–396
  • La Mar G. N., Budd D. L., Viscio D. B., Smith K. M., Langry K. C. Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc. Natl. Acad. Sci. USA 1978; 75: 5755–5759
  • Lebrun L. A., Hoch U., Ortiz de Montellano P. R. Autocatalytic mechanism and consequences of covalent heme attachment in the cytochrome P4504A family. J. Biol. Chem. 2002a; 277: 12755–12761
  • Lebrun L. A., Xu F., Kroetz D. L., Ortiz de Montellano P. R. Covalent attachment of the heme prosthetic group in the CYP4F cytochrome P450 family. Biochemistry 2002b; 41: 5931–5937
  • Limburg J., LeBrun L.A., Ortiz de Montellano P. R. The P450cam/G248E mutant covalently binds its prosthetic heme group. Biochemistry 2004; 44: 4091–4099
  • Ma Y. H., Gebremedhin M. L., Schwartzman M. L., Falck J. R., Clark J. E., Masters B. S., Harder D. R., Roman R. J. 20-Hydroxyeicosatetraenoic acid is an endogenous vasoconstrictor of canine renal arcuate. Circ. Res. 1993; 72: 126–136
  • Metcalfe C. L., Ott M., Patel N., Singh K., Mistry S. C., Goff H. M., Raven E. L. Autocatalytic formation of green heme: evidence for H2O2-dependent formation of a covalent methionine-heme linkage in ascorbate peroxidase. J. Am. Chem. Soc. 2004; 126: 16242–16248
  • Ohlsson P. I., Paul G. The reduction potential of lactoperoxidase. Acta Chem. Scand. 1983; 37: 917–921
  • Ortiz de Montellano P. R. Arylhydrazines as probes of hemoprotein structure and function. Biochimie 1995; 77: 581–593
  • Ortiz de Montellano P. R., De Voss J. J. Substrate oxidation by cytochrome P450 enzymes. Cytochrome P450: Structure, Mechanism, and Biochemistry,3rd, P. R. Ortiz de Montellano. Kluwer Academic/Plenum. 2005; 183–245
  • Oxvig C., Thomsen A. R., Overgaard M. T., Sørensen E. S., Højrup P., Bjerrum M. J., Gleich G. J., Sottrup-Jensen L. Biochemical evidence for heme linkage through esters with Asp-93 and Glu-241 in human eosinophil peroxidase. The ester with Asp-93 is only partially formed in vivo. J. Biol. Chem. 1999; 274: 16953–16958
  • Rae T. D., Goff H. M. The heme prosthetic group of lactoperoxidase. Structural characteristics of heme 1 and heme-1 peptides. J. Biol. Chem. 1998; 273: 27968–27977
  • Rowland P., Blaney F. E., Smyth M. G., Jones J. J., Leydon V. R., Oxbrow A. K., Lewis C. J., Tennant M. M., Modi S., Eggleston D. S., Chenery R. J., Bridges A. M. Crystal structure of human cytochrome P450 2D6. J. Biol. Chem. 2006; 281: 7614–7622
  • Ruf J., Carayon P. Structural and functional aspects of thyroid peroxidase. Arch. Biochem. Biophys. 2006; 445: 269–277
  • Sansen S., Yano J. K., Reynald R. I., Schoch G. A., Griffin K. J., Stout C. D., Johnson E. F. Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem. 2007; 282: 14348–14355
  • Schlichting I., Berendzen J., Chu K., Stock A. M., Maves S. A., Benson D. E., Sweet R. M., Ringe D., Petsko G. A., Sligar S. G. The catalytic pathway of cytochrome P450cam at atomic resolution. Science 2000; 287: 1615–1622
  • Schoch G. A, Yano J. K., Wester M. R., Griffin G. J., Stout C. D., Johnson E. F. Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding-site. J. Biol. Chem. 2004; 279: 9497–9503
  • Scott E. E., He Y. A., Wester M. R., White M. A., Chin C. C., Halpert J. R., Johnson E. F., Stout C. D. An open conformation of mammalian cytochrome P450 2B4 at 1.6 Å-resolution. Proc. Nat. Acad. Sci. U.S.A. 2003; 100: 13196–13201
  • Shaik S., De Visser S. P. Computational approaches to cytochrome P450 function. Cytochrome P450: Structure, Mechanism, and Biochemistry,3rd, P. R. Ortiz de Montellano. Kluwer Academic/Plenum. 2005; 45–85
  • Sheikh I. A., Ethayathulla A. S., Singh A. K., Singh N., Sharma S., Singh T. P. Crystal structure of buffalo lactoperoxidase at 2.75 Å resolution. PDB data bank entry 2GJM. 2006
  • Simpson A. E. C. M. The cytochrome P450 4 (CYP4) family. Gen. Pharmac. 1997; 28: 351–359
  • Singh A. K., Singh N., Sharma S., Bhusha A., Singh T. P. Crystal structure of bovine lactoperoxidase at 2.3 Å resolution. PDB data bank entry 2GJ1. 2006
  • Smith B. D., Sanders J. L., Porubsky P. R., Lushington G. H., Stout C. D., Scott E. E. Structure of the human lung cytochrome P450 2A13. J. Biol. Chem. 2007; 282: 17306–17313
  • Stevens J. M., Daltrop O., Allen J. W. A., Ferguson S. J. C-type cytochrome formation: chemical and biological enigmas. Acc. Chem. Res. 2004; 37: 999–1007
  • Strushkevich N. V., Min J., Loppnau P. W., Tempel W., Arrowsmith C. H., Edwards A. M., Sundstrom M., Weigelt J., Bochkarev A., Plotnikov A. N., Usanov S. A., Jones G., Park H. Structural analysis of CYP2R1 in complex with vitamin D3. PDB Protein Data Bank ref 2ojd. 2007
  • Suriano G., Watanabe S., Ghibaudi E. M., Bollen A., Ferrari R. P., Moguilevsky N. Glu375Gln and Asp225Val mutants: About the nature of the covalent linkages between heme group and apo-protein in bovine lactoperoxidase. Bioorg. Med. Chem. Lett. 2001; 11: 2827–2831
  • Taylor K. L., Strobel F., Yue K. T., Ram P., Pol J., Woods A. S., Kinkade J. M., Jr. Isolation and identification of a protoheme IX derivative released during autolytic cleavage of human myeloperoxidase. Arch. Biochem. Biophys. 1995; 316: 635–642
  • Uetrecht J. P. Mechanism of hypersensitivity reactions: proposed involvement of reactive metabolites generated by activated leukocytes. Trends Pharm. Sci. 1989; 10: 463–467
  • Watanabe S., Varsalona F., Yoo Y.-C., Guillaume J.-P., Bollen A., Shimazaki K., Moguilevsky N. Recombinant bovine lactoperoxidase as a tool to study the heme environment in mammalian peroxidases. FEBS Lett. 1998; 441: 476–479
  • Wester M. R., Yano J. K., Schoch G. A., Yang C., Griffin K. J., Stout C. D., Johnson E. F. The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-Å resolution. J. Biol. Chem. 2004; 279: 35630–35637
  • Williams P. A., Cosme J., Vincovic V. M., Ward A., Angove H. C., Day P. J., Vonrhein C., Tickle I. J., Jhoti H. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 2004; 305: 683–686
  • Williams P. A., Cosme J., Ward A., Angove H. C., Vinkovic D. M., Jhoti H. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 2003; 424: 464–468
  • Wojciechowski G., Huang L, Ortiz de Montellano P. R. Autocatalytic modification of the prosthetic heme of horseradish but not lactoperoxidase by thiocyanate oxidation products. A role for heme-protein covalent crosslinking. J. Am. Chem. Soc. 2005; 127: 15871–15879
  • Wojciechowski G., Ortiz de Montellano P. R. Radical energies and the regiochemistry of addition to heme groups. Methylperoxy and nitrite radical additions to heme of horseradish peroxidase. J. Am. Chem. Soc. 2007; 129: 1663–1672
  • Wojciechowski G., Ortiz de Montellano P. R. Shielding of peroxidase heme vinyl groups from autocatalytically generated electrophilic metabolites. Acta. Chim. Sloven. 2008; 55: 75–84
  • Xu F., Falck J. R., Ortiz de Montellano P. R., Kroetz D. L. Catalytic activity and isoform-specific inhibition of rat cytochrome P450 4F enzymes. J. Pharmacol. Exp. Therap. 2004; 308: 887–895
  • Yano J. K., Hsu M.-H., Griffin K. J., Stout C. D., Johnson E. F. Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nature Struct. Molec. Biol. 2005; 12: 822–823
  • Yano J. K., Wester M. R., Schoch G. A., Griffin K. J., Stout C. D., Johnson E. F. The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05 Å resolution. J. Biol. Chem. 2004; 279: 38091–38094
  • Zbylut S. D., Kincaid J. R. Resonance Raman evidence for protein-induced out-of-plane distortion of the heme prosthetic group of mammalian lactoperoxidase. J. Am. Chem. Soc. 2002; 124: 6751–6758
  • Zederbauer M., Furtmüller P. G., Bellei M., Stampler J., Jakopitsch C., Battistuzzi G., Moguilevsky N., Obinger N. Disruption of the aspartate to heme ester linkage in human myeloperoxidase. Impact on ligand binding, redox chemistry, and interconversion of redox intermediates. J. Biol. Chem. 2007a; 282: 17041–17052
  • Zederbauer M., Furtmüller P. G., Brogioni S., Jakopitsch C., Smulevich G., Obinger C. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat. Prod. Rep. 2007b; 24: 571–584
  • Zederbauer M., Furtmüller P. G., Ganster B., Moguilevsky N., Obinger C. The vinyl-sulfonium bond in human myeloperoxidase: impact on compound I formation and reduction by halides and thiocyanate. Biochem. Biophys. Res. Commun. 2007c; 356: 450–456
  • Zheng Y.-M., Baer B.R., Kneller M. B., Henne K. R., Kunze K. L., Rettie A. E. Covalent heme binding to CYP4B1 via Glu310 and a carbocation porphyrin intermediate. Biochemistry 2003; 42: 4601–4606

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.