520
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Modulating GSH Synthesis Using Glutamate Cysteine Ligase Transgenic and Gene-Targeted Mice

, , , , , , & show all
Pages 465-477 | Published online: 09 Oct 2008

REFERENCES

  • Bajt M. L., Cover C., Lemasters J. J., Jaeschke H. Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol. Sci. 2006; 94: 217–225
  • Balendiran G. K., Dabur R., Fraser D. The role of glutathione in cancer. Cell Biochem. Funct. 2004; 22: 343–352
  • Bea F., Hudson F. N., Chait A., Kavanagh T. J., Rosenfeld M. E. Induction of glutathione synthesis in macrophages by oxidized low-density lipoproteins is mediated by consensus antioxidant response elements. Circ. Res. 2003; 92: 386–393
  • Behr J., Maier K., Degenkolb B., Krombach F., Vogelmeier C. Antioxidative and clinical effects of high-dose N-acetylcysteine in fibrosing alveolitis. Adjunctive therapy to maintenance immunosuppression. Am. J. Respir. Crit. Care Med. 1997; 156: 1897–1901
  • Bekris L. M., Shephard C., Janer M., Graham J., McNeney B., Shin J., Zarghami M., Griffith W., Farin F., Kavanagh T. J., Lernmark A. Glutamate cysteine ligase catalytic subunit promoter polymorphisms and associations with type 1 diabetes age-at-onset and GAD65 autoantibody levels. Exp. Clin. Endocrinol. Diabetes 2007; 115: 221–228
  • Bekris L. M., Viernes H. M., Farin F. M., Maier L. A., Kavanagh T. J., Takaro T. K. Chronic beryllium disease and glutathione biosynthesis genes. J. Occup. Environ. Med. 2006; 48: 599–606
  • Bessems J. G., Vermeulen N. P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol. 2001; 31: 55–138
  • Beutler E., Gelbart T., Kondo T., Matsunaga A. T. The molecular basis of a case of gamma-glutamylcysteine synthetase deficiency. Blood 1999; 94: 2890–2894
  • Beutler E., Moroose R., Kramer L., Gelbart T., Forman L. Gamma-glutamylcysteine synthetase deficiency and hemolytic anemia. Blood 1990; 75: 271–273
  • Botta D., Shi S., White C. C., Dabrowski M. J., Keener C. L., Srinouanprachanh S. L., Farin F. M., Ware C. B., Ladiges W. C., Pierce R. H., Fausto N., Kavanagh T. J. Acetaminophen-induced liver injury is attenuated in male glutamate-cysteine ligase transgenic mice. J. Biol. Chem. 2006; 281: 28865–28875
  • Busciglio J., Andersen J. K., Schipper H. M., Gilad G. M., McCarty R., Marzatico F., Toussaint O. Stress, aging, and neurodegenerative disorders. Molecular mechanisms. Ann. N Y Acad. Sci. 1998; 851: 429–443
  • Chen Y., Shertzer H. G., Schneider S. N., Nebert D. W., Dalton T. P. Glutamate cysteine ligase catalysis: dependence on ATP and modifier subunit for regulation of tissue glutathione levels. J. Biol. Chem. 2005; 280: 33766–33774
  • Cover C., Mansouri A., Knight T. R., Bajt M. L., Lemasters J. J., Pessayre D., Jaeschke H. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther. 2005; 315: 879–887
  • Dahlin D. C., Miwa G. T., Lu A. Y., Nelson S. D. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad Sci U S A 1984; 81: 1327–1331
  • Dickinson D. A., Levonen A. L., Moellering D. R., Arnold E. K., Zhang H., Darley-Usmar V. M., Forman H. J. Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic. Biol. Med. 2004; 37: 1152–1159
  • Dong H., Haining R. L., Thummel K. E., Rettie A. E., Nelson S. D. Involvement of human cytochrome P450 2D6 in the bioactivation of acetaminophen. Drug Metab. Dispos. 2000; 28: 1397–1400
  • Eaton D. L., Bammler T. K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 1999; 49: 156–164
  • Essex D. W. The role of thiols and disulfides in platelet function. Antioxid. Redox Signal 2004; 6: 736–746
  • Fernandez-Checa J. C., Kaplowitz N. Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol. Appl. Pharmacol. 2005; 204: 263–273
  • Gate L., Paul J., Ba G. N., Tew K. D., Tapiero H. Oxidative stress induced in pathologies: the role of antioxidants. Biomed. Pharmacother. 1999; 53: 169–180
  • Griffith O. W., Mulcahy R. T. The enzymes of glutathione synthesis: gamma-glutamylcysteine synthetase. Adv. Enzymol. Relat. Areas Mol. Biol. 1999; 73: 209–267
  • Haddad J. J., Harb H. L. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?. Mol. Immunol. 2005; 42: 987–1014
  • Hamilton D., Wu J. H., Alaoui-Jamali M., Batist G. A novel missense mutation in the gamma-glutamylcysteine synthetase catalytic subunit gene causes both decreased enzymatic activity and glutathione production. Blood 2003; 102: 725–730
  • Hayes J. D., Ellis E. M., Neal G. E., Harrison D. J., Manson M. M. Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem. Soc. Symp. 1999; 64: 141–168
  • Hinson J. A., Reid A. B., McCullough S. S., James L. P. Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab. Rev. 2004; 36: 805–822
  • Ito Y., Abril E. R., Bethea N. W., McCuskey R. S. Role of nitric oxide in hepatic microvascular injury elicited by acetaminophen in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2004; 286: G60–67
  • Ito Y., Bethea N. W., Abril E. R., McCuskey R. S. Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 2003; 10: 391–400
  • Jaeschke H., Gores G. J., Cederbaum A. I., Hinson J. A., Pessayre D., Lemasters J. J. Mechanisms of hepatotoxicity. Toxicol. Sci. 2002; 65: 166–176
  • Jaeschke H., Knight T. R., Bajt M. L. The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol. Lett. 2003; 144: 279–288
  • James L. P., Mayeux P. R., Hinson J. A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 2003; 31: 1499–1506
  • Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973; 187: 195–202
  • Jurma O. P., Hom D. G., Andersen J. K. Decreased glutathione results in calcium-mediated cell death in PC12. Free Radic. Biol. Med. 1997; 23: 1055–1066
  • Kang Y., Oiao X., Jurma O., Knusel B., Andersen J. K. Cloning/brain localization of mouse glutamylcysteine synthetase heavy chain mRNA. Neuroreport 1997; 8: 2053–2060
  • Kitteringham N. R., Powell H., Clement Y. N., Dodd C. C., Tettey J. N., Pirmohamed M., Smith D. A., McLellan L. I., Kevin Park B. Hepatocellular response to chemical stress in CD-1 mice: induction of early genes and gamma-glutamylcysteine synthetase. Hepatology 2000; 32: 321–333
  • Knight T. R., Ho Y. S., Farhood A., Jaeschke H. Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J. Pharmacol. Exp. Ther. 2002; 303: 468–475
  • Knight T. R., Jaeschke H. Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. Comp. Hepatol. 2004; 1(3 Suppl.)S46
  • Knight T. R., Kurtz A., Bajt M. L., Hinson J. A., Jaeschke H. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol. Sci. 2001; 62: 212–220
  • Koide S., Kugiyama K., Sugiyama S., Nakamura S., Fukushima H., Honda O., Yoshimura M., Ogawa H. Association of polymorphism in glutamate-cysteine ligase catalytic subunit gene with coronary vasomotor dysfunction and myocardial infarction. J. Am. Coll. Cardiol. 2003; 41: 539–545
  • Lee W. M. Acetaminophen and the U.S. Acute Liver Failure Study Group: lowering the risks of hepatic failure. Hepatology 2004; 40: 6–9
  • Lenz A. G., Costabel U., Maier K. L. Oxidized BAL fluid proteins in patients with interstitial lung diseases. Eur. Respir. J. 1996; 9: 307–312
  • Liu H., Wang H., Shenvi S., Hagen T. M., Liu R. M. Glutathione metabolism during aging and in Alzheimer disease. Ann. N Y Acad. Sci. 2004; 1019: 346–349
  • Loguercio C., Del Vecchio Blanco C., Coltorti M., Nardi G. Alteration of erythrocyte glutathione, cysteine and glutathione synthetase in alcoholic and non-alcoholic cirrhosis. Scand. J. Clin. Lab. Invest. 1992; 52: 207–213
  • McConnachie L. A., Mohar I., Hudson F. N., Ware C. B., Ladiges W. C., Fernandez C., Chatterton-Kirchmeier S., White C. C., Pierce R. H., Kavanagh T. J. Glutamate cysteine ligase modifier subunit deficiency and gender as determinants of acetaminophen-induced hepatotoxicity in mice. Toxicol. Sci. 2007; 99: 628–636
  • McCuskey R. S., Bethea N. W., Wong J., McCuskey M. K., Abril E. R., Wang X., Ito Y., DeLeve L. D. Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen. J. Hepatol. 2005; 42: 371–377
  • McKone E. F., Shao J., Frangolias D. D., Keener C. L., Shephard C. A., Farin F. M., Tonelli M. R., Pare P. D., Sandford A. J., Aitken M. L., Kavanagh T. J. Variants in the glutamate-cysteine-ligase gene are associated with cystic fibrosis lung disease. Am. J. Respir. Crit. Care Med. 2006; 174: 415–419
  • Meister A. Selective modification of glutathione metabolism. Science 1983; 220: 472–477
  • Michael S. L., Mayeux P. R., Bucci T. J., Warbritton A. R., Irwin L. K., Pumford N. R., Hinson J. A. Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 2001; 5: 432–441
  • Mitchell J. R., Jollow D. J., Potter W. Z., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 1973; 187: 211–217
  • Moinova H. R., Mulcahy R. T. An electrophile responsive element (EpRE) regulates beta-naphthoflavone induction of the human gamma-glutamylcysteine synthetase regulatory subunit gene. Constitutive expression is mediated by an adjacent AP-1 site. J. Biol. Chem. 1998; 273: 14683–14689
  • Moinova H. R., Mulcahy R. T. Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys. Res. Commun. 1999; 261: 661–668
  • Nakamura S., Sugiyama S., Fujioka D., Kawabata K., Ogawa H., Kugiyama K. Polymorphism in glutamate-cysteine ligase modifier subunit gene is associated with impairment of nitric oxide-mediated coronary vasomotor function. Circulation 2003; 108: 1425–1427
  • Nelson S. D. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin. Liver Dis. 1990; 10: 267–278
  • NIH/NCBI (2005a) dbSNP data for hGCLC, NIH/NCBI
  • NIH/NCBI (2005b) dbSNP data for hGCLM, NIH/NCBI
  • O'Dwyer P. J., Szarka C. E., Yao K. S., Halbherr T. C., Pfeiffer G. R., Green F., Gallo J. M., Brennan J., Frucht H., Goosenberg E. B., Hamilton T. C., Litwin S., Balshem A. M., Engstrom P. F., Clapper M. L. Modulation of gene expression in subjects at risk for colorectal cancer by the chemopreventive dithiolethione oltipraz. J. Clin. Invest. 1996; 98: 1210–1217
  • Ochi T. Hydrogen peroxide increases the activity of gamma-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. Arch. Toxicol. 1995; 70: 96–103
  • Ochi T. Menadione causes increases in the level of glutathione and in the activity of gamma-glutamylcysteine synthetase in cultured Chinese hamster V79 cells. Toxicology 1996; 112: 45–55
  • Owen A. D., Schapira A. H., Jenner P., Marsden C. D. Indices of oxidative stress in Parkinson's disease, Alzheimer's disease and dementia with Lewy bodies. J. Neural Transm. Suppl. 1997; 51: 167–173
  • Rahman I., Biswas S. K., Jimenez L. A., Torres M., Forman H. J. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid. Redox Signal 2005; 7: 42–59
  • Rahman I., Marwick J., Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem. Pharmacol. 2004; 68: 1255–1267
  • Reed D. J. Mitochondrial glutathione and chemically induced stress including ethanol. Drug Metab. Rev. 2004; 36: 569–582
  • Ristoff E., Augustson C., Geissler J., de Rijk T., Carlsson K., Luo J. L., Andersson K., Weening R. S., van Zwieten R., Larsson A., Roos D. A missense mutation in the heavy subunit of gamma-glutamylcysteine synthetase gene causes hemolytic anemia. Blood 2000; 95: 2193–2196
  • Sekhar K. R., Meredith M. J., Kerr L. D., Soltaninassab S. R., Spitz D. R., Xu Z. Q., Freeman M. L. Expression of glutathione and gamma-glutamylcysteine synthetase mRNA is Jun dependent. Biochem. Biophys. Res. Commun. 1997; 234: 588–593
  • Sido B., Hack V., Hochlehnert A., Lipps H., Herfarth C., Droge W. Impairment of intestinal glutathione synthesis in patients with inflammatory bowel disease. Gut 1998; 42: 485–492
  • Sims N. R., Nilsson M., Muyderman H. Mitochondrial glutathione: a modulator of brain cell death. J. Bioenerg. Biomembr. 2004; 36: 329–333
  • Sun W. M., Huang Z. Z., Lu S. C. Regulation of gamma-glutamylcysteine synthetase by protein phosphorylation. Biochem. J. 1996; 320: 321–328
  • Townsend D. M. S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol. Interv. 2007; 7: 313–324
  • Walsh A. C., Feulner J. A., Reilly A. Evidence for functionally significant polymorphism of human glutamate cysteine ligase catalytic subunit: association with glutathione levels and drug resistance in the National Cancer Institute tumor cell line panel. Toxicol. Sci. 2001; 61: 218–223
  • Walsh A. C., Li W., Rosen D. R., Lawrence D. A. Genetic mapping of GLCLC, the human gene encoding the catalytic subunit of gamma-glutamyl-cysteine synthetase, to chromosome band 6p12 and characterization of a polymorphic trinucleotide repeat within its 5′ untranslated region. Cytogenet. Cell Genet. 1996; 75: 14–16
  • Wang X. J., Liefer K. M., Tsai S., O'Malley B. W., Roop D. R. Development of gene-switch transgenic mice that inducibly express transforming growth factor beta1 in the epidermis. Proc. Natl. Acad. Sci. U S A 1999; 96: 8483–8488
  • Wild A. C., Gipp J. J., Mulcahy T. Overlapping antioxidant response element and PMA response element sequences mediate basal and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase catalytic subunit gene. Biochem. J. 1998; 332: 373–381
  • Wu G., Fang Y. Z., Yang S., Lupton J. R., Turner N. D. Glutathione metabolism and its implications for health. J. Nutr. 2004; 134: 489–492
  • Zaher H., Buters J. T., Ward J. M., Bruno M. K., Lucas A. M., Stern S. T., Cohen S. D., Gonzalez F. J. Protection against acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol. Appl. Pharmacol. 1998; 152: 193–199

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.