262
Views
30
CrossRef citations to date
0
Altmetric
Review Article

The critical role of oxidative stress in the toxicity and metabolism of quinoxaline 1,4-di-N-oxides in vitro and in vivo

, , , , , , , , & show all
Pages 159-182 | Received 19 Feb 2016, Accepted 10 May 2016, Published online: 10 Jun 2016

References

  • Adams L, Franco MC, Estevez AG. (2015). Reactive nitrogen species in cellular signaling. Exp Biol Med (Maywood) 240:711–717.
  • Anderson RF, Shinde SS, Hay MP, Denny WA. (2006). Potentiation of the cytotoxicity of the anticancer agent tirapazamine by benzotriazine N-oxides: The role of redox equilibria. J Am Chem Soc 128:245–249.
  • Ajani OO. (2014). Present status of quinoxaline motifs: Excellent pathfinders in therapeutic medicine. Eur J Med Chem 85:688–715.
  • Azqueta A, Arbillaga L, Pachon G, et al. (2007). A quinoxaline 1,4-di-N-oxide derivative induces DNA oxidative damage not attenuated by vitamin C and E treatment. Chem Biol Interact 168:95–105.
  • Baviskar SN, Shields MS. (2010). RNAi silenced Dd-grp94 (Dictyostelium discoideum glucose-regulated protein 94 kDa) cell lines in Dictyostelium exhibit marked reduction in growth rate and delay in development. Gene Expr 15:75–87.
  • Belhadjali H, Marguery MC, Journe F, et al. (2002). Allergic and photoallergic contact dermatitis to Olaquindox in a pig breeder with prolonged photosensitivity. Photodermatol Photoimmunol Photomed 18:52–53.
  • Beutin L, Preller E, Kowalski B. (1981). Mutagenicity of quindoxin, its metabolites, and two substituted quinoxaline-di-N-oxides. Antimicrob Agents Chemother 20:336–343.
  • Carta A, Corona P, Loriga M. (2005). Quinoxaline 1,4-dioxide: A versatile scaffold endowed with manifold activities. Curr Med Chem 12:2259–2272.
  • Carta A, Piras S, Loriga G, Paglietti G. (2006). Chemistry, biological properties and SAR analysis of quinoxalinones. Mini Rev Med Chem 6:1179–1200.
  • Cerna M, Angelis K. (1986). Mutagenic action of the quinoxaline-type growth promotors on microorganisms. Biologizace a Chemizace Zivocisne Vyroby – Veterinaria 22:9–15.
  • Chen C, Cheng G, Hao H, et al. (2013). Mechanism of porcine liver xanthine oxidoreductase mediated N-oxide reduction of cyadox as revealed by docking and mutagenesis studies. PLoS One 8:e73912.
  • Chen Q, Tang S, Jin X, et al. (2009). Investigation of the genotoxicity of quinocetone, carbadox and olaquindox in vitro using Vero cells. Food Chem Toxicol 47:328–334.
  • Cheng LL, Wang ZH, Shen JZ, et al. (2012). A specific UPLC-ESI-MS/MS method for analysis of cyadox and its three main metabolites in fish samples. Anal Methods 4:217–221.
  • Cheng XX, Yuan ZH, Fan SX, Yuan JF. (2004). Effect of cyadox on growth performance of carp and Prussian carp. Chin Reserv Fish 24:52–54.
  • China. (2001). Ministry of Agriculture Bulletin, No. 168, feed additive drug use norms.
  • China. (2003). Ministry of Agriculture, PR China, Notice No. 295. <http://www.agri.gov.cn/xxgkxzsp/t20080304_1028167.htm>.
  • Chowdhury G, Kotandeniya D, Daniels JS, et al. (2004). Enzyme-activated, hypoxia-selective DNA damage by 3-amino-2-quinoxalinecarbonitrile 1,4-di-N-oxide. Chem Res Toxicol 17:1399–1405.
  • Croker BA, Krebs DL, Zhang JG, et al. (2003). SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol 4:540–545.
  • Dai C, Tang S, Li D, et al. (2015). Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Toxicol Mech Methods 25:340–346.
  • Das A, Choudhury D, Chakrabarty S, et al. (2012). Acenaphthenequinone induces cell cycle arrest and mitochondrial apoptosis via disruption of cellular microtubules. Toxicol Res 1:171–185.
  • Dewaele M, Maes H, Agostinis P. (2010). ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6:838–854.
  • Ding H, Liu Y, Zeng Z, et al. (2012). Pharmacokinetics of mequindox and one of its major metabolites in chickens after intravenous, intramuscular and oral administration. Res Vet Sci 93:374–377.
  • Ding MX, Wang YL, Zhu HL, Yuan ZH. (2006). Effects of cyadox and olaquindox on intestinal mucosal immunity and on fecal shedding of Escherichia coli in piglets. J Anim Sci 84:2367–2373.
  • Ding MX, Yuan ZH, Wang YL, et al. (2006b). Olaquindox and cyadox stimulate growth and decrease intestinal mucosal immunity of piglets orally inoculated with Escherichia coli. J Anim Physiol Anim Nutr (Berl) 90:238–243.
  • EC. (1976). Commission Regulation (EC) No. 1608/76 Off J Eur Commun L364: 3norms.
  • EC. (1998). Commission Regulation (EC) No. 2788/98. Off J Eur Commun L347/31.
  • Fan SX, Yuan ZH, Wang DJ, et al. (2000). Antibacterial activity in vitro of cyadox. J Huazhong Agri Univ 419:51–54.
  • Fang G, He Q, Zhou S, et al. (2006). Subchronic oral toxicity study with cyadox in Wistar rats. Food Chem Toxicol 44:36–41.
  • FAO/WHO. (1990). Joint Expert Committee on Food Additives. Evaluation of certain veterinary drug residues in good, Technical Series No. 799:45–54.
  • Fekadu J, Rami A. (2015). Beclin-1 deficiency alters autophagosome formation, lysosome biogenesis and enhances neuronal vulnerability of HT22 hippocampal cells. Mol Neurobiol. 1-10. DOI: 10.1007/s12035-015-9453-2.
  • Gong X, Ivanov VN, Hei TK. (2015). 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-kappaB, AP-1 and MAPK pathways in human proximal tubular cells. Arch Toxicol. 1-14. DOI: 10.1007/s00204-015-1600-z.
  • Guvenc D, Aksoy A, Gacar A, et al. (2014). Evaluation of changes in monoamine levels and apoptosis induced by cyfluthrin in rats. Toxicol Res 3:331–340.
  • He CC, Klionsky DJ. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93.
  • He Q, Fang G, Wang Y, et al. (2006). Experimental evaluation of cyadox phototoxicity to Balb/c mouse skin. Photodermatol Photoimmunol Photomed 22:100–104.
  • Henderickx HK, Vervaeke IJ, Decuypere JA, Dierick NA. (1982). Effect of growth promoting agents on the intestinal gut flora. Fortschr Vet 33:56–63.
  • Higuchi Y. (2003). Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol 66:1527–1535.
  • Huang L, Lin Z, Zhou X, et al. (2015a). Estimation of residue depletion of cyadox and its marker residue in edible tissues of pigs using physiologically based pharmacokinetic modelling. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 32:2002–2017.
  • Huang L, Yin F, Pan Y, et al. (2015b). Metabolism, distribution, and elimination of mequindox in pigs, chickens, and rats. J Agric Food Chem 63:9839–9849.
  • Huang LL, Xu N, Harnud S, et al. (2015c). Metabolic disposition and elimination of cyadox in pigs, chickens, carp, and rats. J Agric Food Chem 63:5557–5569.
  • Huang Q, Ihsan A, Guo P, et al. (2016). Evaluation of the safety of primary metabolites of cyadox: Acute and sub-chronic toxicology studies and genotoxicity assessment. Regul Toxicol Pharmacol 74:123–136.
  • Huang XJ, Ihsan A, Wang X, et al. (2009). Long-term dose-dependent response of Mequindox on aldosterone, corticosterone and five steroidogenic enzyme mRNAs in the adrenal of male rats. Toxicol Lett 191:167–173.
  • Huang XJ, Wang X, Ihsan A, et al. (2010a). Interactions of NADPH oxidase, renin-angiotensin-aldosterone system and reactive oxygen species in mequindox-mediated aldosterone secretion in Wistar rats. Toxicol Lett 198:112–118.
  • Huang XJ, Zhang HH, Wang X, et al. (2010b). ROS mediated cytotoxicity of porcine adrenocortical cells induced by QdNOs derivatives in vitro. Chem Biol Interact 185:227–234.
  • Ihsan A, Wang X, Huang XJ, et al. (2010). Acute and subchronic toxicological evaluation of mequindox in Wistar rats. Regul Toxicol Pharmacol 57:307–314.
  • Ihsan A, Wang X, Liu Z, et al. (2011). Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol 252:281–288.
  • Ihsan A, Wang X, Tu HG, et al. (2013a). Genotoxicity evaluation of mequindox in different short-term tests. Food Chem Toxicol 51:330–336.
  • Ihsan A, Wang X, Zhang W, et al. (2013b). Genotoxicity of quinocetone, cyadox and olaquindox in vitro and in vivo. Food Chem Toxicol 59:207–214.
  • Juin P, Hueber AO, Littlewood T, Evan G. (1999). c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev 13:1367–1381.
  • Kantari C, Walczak H. (2011). Caspase-8 and bid: Caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563.
  • Ki YW, Lee JE, Park JH, et al. (2012). Reactive oxygen species and mitogen-activated protein kinase induce apoptotic death of SH-SY5Y cells in response to fipronil. Toxicol Lett 211:18–28.
  • Kim HG, Kim YR, Park JH, et al. (2015). Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch Toxicol 89:2039–2050.
  • Klaric MS, Pepeljnjak S, Domijan AM, Petrik J. (2007). Lipid peroxidation and glutathione levels in porcine kidney PK15 cells after individual and combined treatment with fumonisin B(1), beauvericin and ochratoxin A. Basic Clin Pharmacol Toxicol 100:157–164.
  • Klefstrom J, Verschuren EW, Evan G. (2002). c-Myc augments the apoptotic activity of cytosolic death receptor signaling proteins by engaging the mitochondrial apoptotic pathway. J Biol Chem 277:43224–43232.
  • Kobayashi M, Yamamoto M. (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394.
  • Lai FN, Ma JY, Liu JC, et al. (2015). The influence of N-acetyl-l-cysteine on damage of porcine oocyte exposed to zearalenone in vitro. Toxicol Appl Pharmacol 289:341–348.
  • Lakhani SA, Masud A, Kuida K, et al. (2006). Caspases 3 and 7: Key mediators of mitochondrial events of apoptosis. Science 311:847–851.
  • Lang R, Pauleau AL, Parganas E, et al. (2003). SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol 4:546–550.
  • Lee JE, Kang JS, Ki YW, et al. (2011a). Akt/GSK3β signaling is involved in fipronil-induced apoptotic cell death of human neuroblastoma SH-SY5Y cells. Toxicol Lett 202:133–141.
  • Lee SJ, Kim HP, Jin Y, et al. (2011b). Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy 7:829–839.
  • Leung LK, Su Y, Chen R, et al. (2001). Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 131:2248–2251.
  • Li GY, Kim M, Kim JH, et al. (2008). Gene expression profiling in human lung fibroblast following cadmium exposure. Food Chem Toxicol 46:1131–1137.
  • Li J, Huang L, Wang X, et al. (2014a). Metabolic disposition and excretion of quinocetone in rats, pigs, broilers, and carp. Food Chem Toxicol 69:109–119.
  • Li J, Huang LL, Pan YH, et al. (2014b). Tissue depletion of quinocetone and its five major metabolites in pigs, broilers, and carp fed quinocetone premix. J Agric Food Chem 62:10348–10356.
  • Li JH, Liu XR, Zhang Y, et al. (2012). Toxicity of nano zinc oxide to mitochondria. Toxicol Res 1:137–144.
  • Li W, Kong AN. (2009). Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 48:91–104.
  • Li YJ, Shimizu T, Hirata Y, et al. (2013). EM, EM703 inhibit NF-kB activation induced by oxidative stress from diesel exhaust particle in human bronchial epithelial cells: Importance in IL-8 transcription. Pulm Pharmacol Ther 26:318–324.
  • Li Z, Yu C, Chen X, et al. (2015). [Research on olaquindox induced endoplasmic reticulum stress related apoptosis on nephrotoxicity]. Wei Sheng Yan Jiu 44:444–450.
  • Liao YC, Chen YF, Lee TC. (2015). Increased susceptibility of H-Ras(G12V)-transformed human urothelial cells to the genotoxic effects of sodium arsenite. Arch Toxicol 89:1971–1979.
  • Lingli H, Ning X, Harnud S, et al. (2015). Metabolic disposition and elimination of cyadox in pigs, chickens, carp, and rats. J Agric Food Chem 63:5557–5569.
  • Lirk P, Hoffmann G, Rieder J. (2002). Inducible nitric oxide synthase-time for reappraisal. Curr Drug Targets Inflamm Allergy 1:89–108.
  • Liu J, Ge XH, Man OY, et al. (2011a). Catalytic characteristics of CYP3A22-dependent mequindox detoxification. Catal Commun 12:637–643.
  • Liu J, Ouyang M, Jiang J, et al. (2012). Mequindox induced cellular DNA damage via generation of reactive oxygen species. Mutat Res 741:70–75.
  • Liu Z, Huang L, Dai M, et al. (2009). Metabolism of cyadox in rat, chicken and pig liver microsomes and identification of metabolites by accurate mass measurements using electrospray ionization hybrid ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:2026–2034.
  • Liu Z, Huang L, Dai M, et al. (2008). Metabolism of olaquindox in rat liver microsomes: Structural elucidation of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:1009–1016.
  • Liu ZY, Huang LL, Chen DM, et al. (2010a). Application of electrospray ionization hybrid ion trap/time-of-flight mass spectrometry in the rapid characterization of quinocetone metabolites formed in vitro. Anal Bioanal Chem 396:1259–1271.
  • Liu ZY, Huang LL, Chen DM, et al. (2010b). The metabolism and N-oxide reduction of olaquindox in liver preparations of rats, pigs and chicken. Toxicol Lett 195:51–59.
  • Liu ZY, Huang LL, Chen DM, Yuan ZH. (2010c). Metabolism of mequindox in liver microsomes of rats, chicken and pigs. Rapid Commun Mass Spectrom 24:909–918.
  • Liu ZY, Huang LL, Zhou XN, et al. (2011b). The metabolism of olaquindox in rats, chickens and pigs. Toxicol Lett 200:24–33.
  • Liu ZY, Sun ZL. (2013). The metabolism of carbadox, olaquindox, mequindox, quinocetone and cyadox: An overview. Med Chem 9:1017–1027.
  • Liu ZY, Tao YF, Chen DM, et al. (2011c). Identification of carbadox metabolites formed by liver microsomes from rats, pigs and chickens using high-performance liquid chromatography combined with hybrid ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:341–348.
  • Ma YC, Su N, Shi XJ, et al. (2015). Jaridonin-induced G2/M phase arrest in human esophageal cancer cells is caused by reactive oxygen species-dependent Cdc2-tyr15 phosphorylation via ATM-Chk1/2-Cdc25C pathway. Toxicol Appl Pharmacol 282:227–236.
  • Mishra S, Dwivedi PD, Pandey HP, Das M. (2014). Role of oxidative stress in Deoxynivalenol induced toxicity. Food Chem Toxicol 72:20–29.
  • Mu P, Zheng M, Xu M, et al. (2014). N-oxide reduction of quinoxaline-1,4-dioxides catalyzed by porcine aldehyde oxidase SsAOX1. Drug Metab Dispos 42:511–519.
  • Munz M, Kieu C, Mack B, et al. (2004). The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23:5748–5758.
  • Nakayama K, Nakayama N, Wang TL, Shih Ie M. (2007). NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res 67:8058–8064.
  • Nicholson DW, Ali A, Thornberry NA, et al. (1995). Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43.
  • Niculescu AB, 3rd, Chen X, Smeets M, et al. (1998). Effects of p21(Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol Cell Biol 18:629–643.
  • Nunoshiba T, Nishioka H. (1989). Genotoxicity of quinoxaline 1,4-dioxide derivatives in Escherichia coli and Salmonella typhimurium. Mutat Res 217:203–209.
  • Oh J, Hur MW, Lee CE. (2009). SOCS1 protects protein tyrosine phosphatases by thioredoxin upregulation and attenuates Jaks to suppress ROS-mediated apoptosis. Oncogene 28:3145–3156.
  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM. (2000). The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326.
  • Park JH, Park YS, Lee JB, et al. (2015). Meloxicam inhibits fipronil-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells. J Appl Toxicol 36:10–23.
  • Pedruzzi LM, Stockler-Pinto MB, Leite M, Jr., Mafra D. (2012). Nrf2-keap1 system versus NF-κB: The good and the evil in chronic kidney disease? Biochimie 94:2461–2466.
  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G. (2001). Reactive oxygen species generated from the mitochondrial electron transport chain induce cytochrome c dissociation from beef-heart submitochondrial particles via cardiolipin peroxidation. Possible role in the apoptosis. FEBS Lett 509:435–438.
  • Pirinccioglu AG, Gokalp D, Pirinccioglu M, et al. (2010). Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43:1220–1224.
  • Pospisil M, Pipalova I, Novacek L. (1986). Therapeutic efficiency of olaquindox in gamma-irradiated mice. Strahlenther Onkol 162:793–797.
  • Romanov V, Whyard TC, Waltzer WC, et al. (2015). Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol 89:47–56.
  • Scheutwinkel-Reich M, Vd Hude W. (1984). Sister-chromatid exchange in Chinese hamster V79 cells exposed to quindoxin, carbadox and olaquindox. Mutat Res 139:199–202.
  • Sevcik B. (1986). Research of harmless and safety of application of the growth promoter cyadox. Workshop 1:93.
  • Shaukat Z, Liu D, Hussain R, et al. (2015). The role of JNK signalling in responses to oxidative DNA damage. Curr Drug Targets 17:154–163.
  • Shi J, Sun B, Shi W, et al. (2015). Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 36:655–662.
  • Stirone C, Duckles SP, Krause DN, Procaccio V. (2005). Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68:959–965.
  • Stockmann-Juvala H, Mikkola J, Naarala J, et al. (2004b). Fumonisin B1-induced toxicity and oxidative damage in U-118MG glioblastoma cells. Toxicology 202:173–183.
  • Sumedha NC, Miltonprabu S. (2015). Cardiac mitochondrial oxidative stress and dysfunction induced by arsenic and its amelioration by diallyl trisulphide. Toxicol Res 4:291–301.
  • Tabassum H, Parvez S, Pasha ST, et al. (2010). Protective effect of lipoic acid against methotrexate-induced oxidative stress in liver mitochondria. Food Chem Toxicol 48:1973–1979.
  • Tanaka H, Matsumura I, Ezoe S, et al. (2002). E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 9:1017–1029.
  • Tang X, Mu P, Wu J, et al. (2012). Carbonyl reduction of mequindox by chicken and porcine cytosol and cloned carbonyl reductase 1. Drug Metab Dispos 40:788–795.
  • Trinei M, Giorgio M, Cicalese A, et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878.
  • Vafa O, Wade M, Kern S, et al. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol Cell 9:1031–1044.
  • Vicente E, Perez-Silanes S, Lima LM, et al. (2009). Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg Med Chem 17:385–389.
  • Vina J, Sastre J, Pallardo FV, et al. (2006). Role of mitochondrial oxidative stress to explain the different longevity between genders: Protective effect of estrogens. Free Radic Res 40:1359–1365.
  • Vircheva S, Nenkova G, Georgieva A, et al. (2012). Effects of desipramine on the antioxidant status in rat tissues at carrageenan-induced paw inflammation. Cell Biochem Funct 30:18–23.
  • Voogd CE, van der Stel JJ, Jacobs JJ. (1980). The mutagenic action of quindoxin, carbadox, olaquindox and some other N-oxides on bacteria and yeast. Mutat Res 78:233–242.
  • Wang D, Zhong Y, Luo X, et al. (2011a). Pu-erh black tea supplementation decreases quinocetone-induced ROS generation and oxidative DNA damage in Balb/c mice. Food Chem Toxicol 49:477–484.
  • Wang H, Wei L, Li C, et al. (2015a). CDK5RAP1 deficiency induces cell cycle arrest and apoptosis in human breast cancer cell line by the ROS/JNK signaling pathway. Oncol Rep 33:1089–1096.
  • Wang X, Fang GJ, Wang YL, et al. (2011a). Two generation reproduction and teratogenicity studies of feeding cyadox in Wistar rats. Food Chem Toxicol 49:1068–1079.
  • Wang X, He QH, Wang YL, et al. (2011b). A chronic toxicity study of cyadox in Wistar rats. Regul Toxicol Pharmacol 59:324–333.
  • Wang X, Huang XJ, Ihsan A, et al. (2011c). Metabolites and JAK/STAT pathway were involved in the liver and spleen damage in male Wistar rats fed with mequindox. Toxicology 280:126–134.
  • Wang X, Wan D, Ihsan A, et al. (2015b). Mechanism of adrenocortical toxicity induced by quinocetone and its bidesoxy-quinocetone metabolite in porcine adrenocortical cells in vitro. Food Chem Toxicol 84:115–124.
  • Wang X, Wu Q, Wan D, et al. (2016a). Fumonisins: Oxidative stress-mediated toxicity and metabolism in vivo and in vitro. Arch Toxicol 90:81–101.
  • Wang X, Yang P, Li J, et al. (2016b). Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicol Res. 5:446–460.
  • Wang X, Zhang H, Huang L, et al. (2015c). Deoxidation rates play a critical role in DNA damage mediated by important synthetic drugs, quinoxaline 1,4-dioxides. Chem Res Toxicol 28:470–481.
  • Wang X, Zhang W, Wang Y, et al. (2010). Acute and sub-chronic oral toxicological evaluations of quinocetone in Wistar rats. Regul Toxicol Pharmacol 58:421–427.
  • Wang X, Zhou W, Ihsan A, et al. (2015d). Assessment of thirteen-week subchronic oral toxicity of cyadox in Beagle dogs. Regul Toxicol Pharmacol 73:652–659.
  • Wang Y, Yuan Z, Zhu H, et al. (2005). Effect of cyadox on growth and nutrient digestibility in weanling pigs. S Afr J Anim Sci 35:117–125.
  • Wang Z, Zhang C, Hong Z, et al. (2013). C/EBP homologous protein (CHOP) mediates neuronal apoptosis in rats with spinal cord injury. Exp Ther Med 5:107–111.
  • Watanabe T, Sekine S, Naguro I, et al. (2015). Apoptosis signal-regulating kinase 1 (ASK1)-p38 pathway-dependent cytoplasmic translocation of the orphan nuclear receptor NR4A2 is required for oxidative stress-induced necrosis. J Biol Chem 290:10791–10803.
  • WHO (1991a). World Health Organization. Toxicological evaluation of certain veterinary drug residues in food. Carbadox. WHO Food Additives Series, No. 27, No. 700:1–18 on INCHEM.
  • WHO (1991b). World Health Organization. Toxicological evaluation of certain veterinary drug residues in food. Olaquindox. WHO Food Additives Series, No. 27, No. 701:1–18 on INCHEM.
  • Woodward KN. (2008). Assessment of user safety, exposure and risk to veterinary medicinal products in the European union. Regul Toxicol Pharmacol 50:114–128.
  • Wu H, Li L, Shen J, et al. (2012). In vitro metabolism of cyadox in rat, chicken and swine using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. J Pharm Biomed Anal 67-68:175–185.
  • Xu N, Huang L, Liu Z, et al. (2011). Metabolism of cyadox by the intestinal mucosa microsomes and gut flora of swine, and identification of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 25:2333–2344.
  • Yadav V, Sultana S, Yadav J, Saini N. (2012). Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One 7:e47796
  • Yang HY, Lee TH. (2015). Antioxidant enzymes as redox-based biomarkers: A brief review. BMB Rep 48:200–208.
  • Yang J, Liu Z, Li M, Qiu X. (2013a). Hydroxylation of quinocetone and carbadox is mediated by CYP1As in the chicken (Gallus gallus). Comp Biochem Physiol C Toxicol Pharmacol 158:84–90.
  • Yang KM, Kim BM, Park JB. (2014). omega-Hydroxyundec-9-enoic acid induces apoptosis through ROS-mediated endoplasmic reticulum stress in non-small cell lung cancer cells. Biochem Biophys Res Commun 448:267–273.
  • Yang W, Fu J, Xiao X, et al. (2013b). Quinocetone triggers oxidative stress and induces cytotoxicity and genotoxicity in human peripheral lymphocytes of both genders. J Sci Food Agric 93:1317–1325.
  • Yang Y, Jiang L, She Y, et al. (2015). Olaquindox induces DNA damage via the lysosomal and mitochondrial pathway involving ROS production and p53 activation in HEK293 cells. Environ Toxicol Pharmacol 40:792–799.
  • Yoshimura H. (2002). Teratogenic assessment of carbadox in rats. Toxicol Lett 129:115–118.
  • Yoshimura H, Nakamura M, Koeda T, Yoshikawa K. (1981). Mutagenicities of carbadox and olaquindox-growth promoters for pigs. Mutat Res 90:49–55.
  • Yu M, Wang D, Xu MJ, et al. (2014). Quinocetone-induced Nrf2/HO-1 pathway suppression aggravates hepatocyte damage of Sprague-Dawley rats. Food Chem Toxicol 69:210–219.
  • Yu M, Xu MJ, Liu Y, et al. (2013). Nrf2/ARE is the potential pathway to protect Sprague-Dawley rats against oxidative stress induced by quinocetone. Regul Toxicol Pharmacol 66:279–285.
  • Zhang CM, Wang CC, Tang SS, et al. (2013). TNFR1/TNF-alpha and mitochondria interrelated signaling pathway mediates quinocetone-induced apoptosis in HepG2 cells. Food Chem Toxicol 62:825–838.
  • Zhang K, Wang X, Wang C, et al. (2015). Investigation of quinocetone-induced mitochondrial damage and apoptosis in HepG2 cells and compared with its metabolites. Environ Toxicol Pharmacol 39:555–567.
  • Zhang K, Zheng W, Zheng H, et al. (2014). Identification of oxidative stress and responsive genes of HepG2 cells exposed to quinocetone, and compared with its metabolites. Cell Biol Toxicol 30:313–329.
  • Zhang T, Tang SS, Jin X, et al. (2011). c-Myc influences olaquindox-induced apoptosis in human hepatoma G2 cells. Mol Cell Biochem 354:253–261.
  • Zhao D, Wang C, Tang S, et al. (2015). Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J Appl Toxicol 35:709–716.
  • Zhao WX, Tang SS, Jin X, et al. (2013). Olaquindox-induced apoptosis is suppressed through p38 MAPK and ROS-mediated JNK pathways in HepG2 cells. Cell Biol Toxicol 29:229–238.
  • Zhao XJ, Huang C, Lei H, et al. (2011). Dynamic metabolic response of mice to acute mequindox exposure. J Proteome Res 10:5183–5190.
  • Zheng M, Jiang J, Wang J, et al. (2011). The mechanism of enzymatic and non-enzymatic N-oxide reductive metabolism of cyadox in pig liver. Xenobiotica 41:964–971.
  • Zhou F, Sun W, Zhao M. (2015a). Controlled formation of emulsion gels stabilized by salted myofibrillar protein under malondialdehyde (MDA)-induced oxidative stress. J Agric Food Chem 63:3766–3777.
  • Zhou J, Li C, Wang L, et al. (2015b). Hepatoprotective effects of a Chinese herbal formulation, Yingchen decoction, on olaquindox-induced hepatopancreas injury in Jian carp (Cyprinus carpio var. Jian). Fish Physiol Biochem 41:153–163.
  • Zhu S, Wang Y, Jin J, et al. (2012). Endoplasmic reticulum stress mediates aristolochic acid I-induced apoptosis in human renal proximal tubular epithelial cells. Toxicol In Vitro 26:663–671.
  • Zorov DB, Juhaszova M, Sollott SJ. (2014). Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950.
  • Zou J, Chen Q, Jin X, et al. (2011). Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells. Toxicology 285:104–113.
  • Zou J, Chen Q, Tang S, et al. (2009). Olaquindox-induced genotoxicity and oxidative DNA damage in human hepatoma G2 (HepG2) cells. Mutat Res 676:27–33.
  • Zuo L, Zhou T, Pannell BK, et al. (2015). Biological and physiological role of reactive oxygen species-the good, the bad and the ugly. Acta Physiol (Oxf) 214:329–348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.