464
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame

, , , &
Pages 405-433 | Received 08 Apr 2016, Accepted 25 May 2016, Published online: 20 Jun 2016

References

  • Aguiar M, Masse R, Gibbs BF. (2005). Regulation of cytochrome P450 by posttranslational modification. Drug Metab Rev 37:379–404.
  • Ahner A, Brodsky JL. (2004). Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 14:474–478.
  • Anderson DJ, Le Moigne R, Djakovic S, et al. (2015). Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis. Cancer Cell 28:653–665.
  • Ballinger CA, Connell P, Wu Y, et al. (1999). Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19:4535–4545.
  • Bandiera S, Weidlich S, Harth V, et al. (2005). Proteasomal degradation of human CYP1B1: effect of the Asn453Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol Pharmacol 67:435–443.
  • Bardag-Gorce F, Li J, French BA, French SW. (2002). Ethanol withdrawal induced CYP2E1 degradation in vivo, blocked by proteasomal inhibitor PS-341. Free Radic Biol Med 32:17–21.
  • Bardag-Gorce F, French BA, Nan L, et al. (2006). CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp Mol Pathol 81:191–201.
  • Bar-Nun S. (2005). The role of p97/Cdc48p in endoplasmic reticulum-associated degradation: from the immune system to yeast. Curr Top Microbiol Immunol 300:95–125.
  • Beaune P, Dansette PM, Mansuy D, et al. (1987). Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc Natl Acad Sci USA 84:551–555.
  • Bento CF, Renna M, Ghislat G, et al. (2016). Mammalian autophagy: How does it work? Annu Rev Biochem. [Epub ahead of print]. doi: 10.1146/annurev-biochem-060815-014556.
  • Birgisdottir AB, Lamark T, Johansen T. (2013). The LIR motif - crucial for selective autophagy. J Cell Sci 126:3237–3247.
  • Bjorkoy G, Lamark T, Brech A, et al. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614.
  • Boitier E, Beaune P. (1999). Cytochromes P450 as targets to autoantibodies in immune mediated diseases. Mol Aspects Med 20:84–137.
  • Boitier E, Beaune P. (2000). Xenobiotic-metabolizing enzymes as autoantigens in human autoimmune disorders. An update. Clin Rev Allergy Immunol 18:215–239.
  • Bourdi M, Chen W, Peter RM, et al. (1996). Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem Res Toxicol 9:1159–1166.
  • Bourdi M, Gautier JC, Mircheva J, et al. (1992). Anti-liver microsomes autoantibodies and dihydralazine-induced hepatitis: specificity of autoantibodies and inductive capacity of the drug. Mol Pharmacol 42:280–285.
  • Bridges A, Gruenke L, Chang YT, et al. (1998). Identification of the binding site on cytochrome P450 2B4 for cytochrome b5 and cytochrome P450 reductase. J Biol Chem 273:17036–17049.
  • Bug M, Meyer H. (2012). Expanding into new markets-VCP/p97 in endocytosis and autophagy. J Struct Biol 179:78–82.
  • Cadwell K, Coscoy L. (2005). Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309:127–130.
  • Carvalho P, Goder V, Rapoport TA. (2006). Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:361–373.
  • Catic A, Collins C, Church GM, Ploegh HL. (2004). Preferred in vivo ubiquitination sites. Bioinformatics 20:3302–3307.
  • Cederbaum AI. (2006). CYP2E1-biochemical and toxicological aspects and role in alcohol-induced liver injury . Mt Sinai J Med 73:657–672.
  • Cederbaum AI, Lu Y, Wang X, Wu D. (2013). Synergistic toxic interactions between CYP2E1, LPS/TNFα, and JNK/p38 MAP kinase and their implications in alcohol-induced liver injury. Adv Exp Med Biol 815:145–172.
  • Chen B, Mariano J, Tsai YC, et al. (2006). The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci USA 103:341–346.
  • Chen Z, Du S, Fang S. (2012). gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum. Curr Protein Pept Sci 13:414–424.
  • Chien JY, Thummel KE, Slattery JT. (1997). Pharmacokinetic consequences of induction of CYP2E1 by ligand stabilization. Drug Metab Dispos 25:1165–1175.
  • Chou TF, Brown SJ, Minond D, et al. (2011). Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc Natl Acad Sci USA 108:4834–4839.
  • Christianson JC, Ye Y. (2014). Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat Struct Mol Biol 21:325–335.
  • Clapp KM, Peng HM, Jenkins GJ, et al. (2012). Ubiquitination of neuronal nitric-oxide synthase in the calmodulin-binding site triggers proteasomal degradation of the protein. J Biol Chem 287:42601–42610.
  • Correia MA, Decker C, Sugiyama K, et al. (1987). Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch Biochem Biophys 258:436–451.
  • Correia MA, Yao K, Wrighton SA, et al. (1992a). Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: a case for distinct proteolytic mechanisms? Arch Biochem Biophys 294:493–503.
  • Correia MA, Davoll SH, Wrighton SA, Thomas PE. (1992b). Degradation of rat liver cytochromes P450 3A after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: characterization of the proteolytic system. Arch Biochem Biophys 297:228–238.
  • Correia MA. (2003). Hepatic cytochrome P450 degradation: mechanistic diversity of the cellular sanitation brigade. Drug Metab Rev 35:107–143.
  • Correia MA, Sadeghi S, Mundo-Paredes E. (2005). Cytochrome P450 ubiquitination: branding for the proteolytic slaughter? Annu Rev Pharmacol Toxicol 45:439–464.
  • Correia MA, Liao M. (2007). Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Expert Opin Drug Metab Toxicol 3:33–49.
  • Correia MA, Wang Y, Kim SM, Guan S. (2014). Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition? IUBMB Life 66:78–88.
  • Cuervo AM. (2011). Cell biology. Autophagy's top chef. Science 332:1392–1393.
  • Dai Y, Cederbaum AI. (1995). Inactivation and degradation of human cytochrome P4502E1 by CCl4 in a transfected HepG2 cell line. J Pharmacol Exp Ther 275:1614–1622.
  • Dai RM, Li CC. (2001). Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol 3:740–744.
  • Dansette PM, Bonierbale E, Minoletti C, et al. (1998). Drug-induced immunotoxicity. Eur J Drug Metab Pharmacokinet 23:443–451.
  • Das R, Mariano J, Tsai YC, et al. (2009). Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol Cell 34:674–685.
  • Das R, Liang YH, Mariano J, et al. (2013). Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J 32:2504–2516.
  • Deshaies RJ. (2014). Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol 12:94
  • Dick LR, Cruikshank AA, Destree AT, et al. (1997). Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188.
  • Dreveny I, Pye VE, Beuron F, et al. (2004). p97 and close encounters of every kind: a brief review. Biochem Soc Trans 32:715–720.
  • Edkins AL. (2013). CHIP: a co-chaperone for degradation by the proteasome. Subcell Biochem 78:219–242.
  • Ekroos M, Sjogren T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci USA 103:13682–13687.
  • Ekstrom G, Ingelman-Sundberg M. (1989). Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem Pharmacol 38:1313–1319.
  • Eliasson E, Johansson I, Ingelman-Sundberg M. (1988). Ligand-dependent maintenance of ethanol-inducible cytochrome P-450 in primary rat hepatocyte cell cultures. Biochem Biophys Res Commun 150:436–443.
  • Eliasson E, Johansson I, Ingelman-Sundberg M. (1990). Substrate-, hormone-, and cAMP-regulated cytochrome P450 degradation. Proc Natl Acad Sci USA 87:3225–3229.
  • Eliasson E, Mkrtchian S, Ingelman-Sundberg M. (1992). Hormone- and substrate-regulated intracellular degradation of cytochrome P450 (2E1) involving MgATP-activated rapid proteolysis in the endoplasmic reticulum membranes. J Biol Chem 267:15765–15769.
  • Eliasson E, Mkrtchian S, Halpert JR, Ingelman-Sundberg M. (1994). Substrate-regulated, cAMP-dependent phosphorylation, denaturation, and degradation of glucocorticoid-inducible rat liver cytochrome P450 3A1. J Biol Chem 269:18378–18383.
  • Eliasson E, Kenna JG. (1996). Cytochrome P450 2E1 is a cell surface autoantigen in halothane hepatitis. Mol Pharmacol 50:573–582.
  • Elkabetz Y, Shapira I, Rabinovich E, Bar-Nun S. (2004). Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J Biol Chem 279:3980–3989.
  • Fang S, Ferrone M, Yang C, et al. (2001). The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci USA 98:14422–14427.
  • Faouzi S, Medzihradszky KF, Hefner C, et al. (2007). Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: A role for the cytosolic AAA ATPase p97? Biochemistry 46:7793–7803.
  • Ferrington DA, Gregerson DS. (2012). Immunoproteasomes: Structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109:75–112.
  • Finley D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513.
  • Fouts JR. (1962). Interaction of drugs and hepatic microsomes. Fed Proc 21:1107–1111.
  • Freeman JE, Wolf CR. (1994). Evidence against a role for serine 129 in determining murine cytochrome P450 Cyp2e-1 protein levels. Biochemistry 33:13963–13966.
  • Fujita E, Kouroku Y, Isoai A, et al. (2007). Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 16:618–629.
  • Gao Q, Doneanu CE, Shaffer SA, et al. (2006). Identification of the interactions between cytochrome P450 2E1 and cytochrome b5 by mass spectrometry and site-directed mutagenesis. J Biol Chem 281:20404–20417.
  • Goasduff T, Cederbaum AI. (1999). NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: Role of reactive oxygen species. Arch Biochem Biophys 370:258–270.
  • Goldberg AL, Rock KL. (1992). Proteolysis, proteasomes and antigen presentation. Nature 357:375–379.
  • Gorsky LD, Koop DR, Coon MJ. (1984). On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem 259:6812–6817.
  • Gu J, Weng Y, Zhang QY, et al. (2003). Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase. J Biol Chem 278:25895–25901.
  • Guengerich FP. (2015) Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism and Biochemistry, Ortiz de Montellano P, ed. Switzerland: Springer International Publishing, 523–785.
  • Guerriero CJ, Brodsky JL. (2012). The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol Rev 92:537–576.
  • Halpert JR. (2011). Structure and function of cytochromes P450 2B: from mechanism-based inactivators to X-ray crystal structures and back. Drug Metab Dispos 39:1113–1121.
  • Hampton RY, Garza RM. (2009). Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev 109:1561–1574.
  • Henderson CJ, Otto DM, Carrie D, et al. (2003). Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 278:13480–13486.
  • Hichiya H, Tanaka-Kagawa T, Soyama A, et al. (2005). Functional characterization of five novel CYP2C8 variants, G171S, R186X, R186G, K247R, and K383N, found in a Japanese population. Drug Metab Dispos 33:630–636.
  • Hirsch C, Gauss R, Horn SC, et al. (2009). The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460.
  • Hutterer F, Dressler K, Greim H, et al. (1975) Effect of cyclic AMP on the phenobarbital-induced increase in cytochrome P450 and hypertrophy of the endoplasmic reticulum of the rat liver. In Cytochromes P450 and b5. Structure, Function and Interactions, Cooper DY, Rosenthal O, Snyder R, and Witmer C, eds. New York: Plenum Press, 117–126.
  • Ichimura Y, Kumanomidou T, Sou YS, et al. (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857.
  • Ikeda Y, Demartino GN, Brown MS, et al. (2009). Regulated endoplasmic reticulum-associated degradation of a polytopic protein: p97 recruits proteasomes to Insig-1 before extraction from membranes. J Biol Chem 284:34889–34900.
  • Imai Y, Soda M, Hatakeyama S, et al. (2002). CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67.
  • Ishikura S, Weissman AM, Bonifacino JS. (2010). Serine residues in the cytosolic tail of the T-cell antigen receptor alpha-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J Biol Chem 285:23916–23924.
  • Itakura E, Mizushima N. (2011). p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol 192:17–27.
  • Jentsch S, Rumpf S. (2007). Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem Sci 32:6–11.
  • Jiang J, Ballinger CA, Wu Y, et al. (2001). CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem 276:42938–42944.
  • Jo Y, Lee PC, Sguigna PV, DeBose-Boyd RA. (2011). Sterol-induced degradation of HMG CoA reductase depends on interplay of two Insigs and two ubiquitin ligases, gp78 and Trc8. Proc Natl Acad Sci USA 108:20503–20508.
  • Johansen T, Lamark T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296.
  • Johansson I, Eliasson E, Ingelman-Sundberg M. (1991). Hormone controlled phosphorylation and degradation of CYP2B1 and CYP2E1 in isolated rat hepatocytes. Biochem Biophys Res Commun 174:37–42.
  • Johnson DE. (2015). The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22:T1–T17.
  • Ju JS, Fuentealba RA, Miller SE, et al. (2009). Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187:875–888.
  • Kalgutkar AS, Obach RS, Maurer TS. (2007). Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr Drug Metab 8:407–447.
  • Katsuragi Y, Ichimura Y, Komatsu M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. Febs J 282:4672–4678.
  • Kikkert M, Doolman R, Dai M, et al. (2004). Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem 279:3525–3534.
  • Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci USA 105:20567–20574.
  • Kim SM, Acharya P, Engel JC, Correia MA. (2010). Liver cytochrome P450 3A ubiquitination in vivo by gp78/autocrine motility factor receptor and C terminus of Hsp70-interacting protein (CHIP) E3 ubiquitin ligases: physiological and pharmacological relevance. J Biol Chem 285:35866–35877.
  • Kim SM, Karkashon S, Yeh SR, Correia MA. (2016a). Structural determinants of human tryptophan 2,3-dioxygenase protein degradation. Exp Biol 260:816.4.
  • Kim SM, Grenert JP, Patterson C, Correia MA. (2016b) CHIP-/-mouse liver: Adiponectin-AMPK-FOXO-activation overrides CYP2E1-elicited JNK1-activation, delaying onset of NASH: Therapeutic implications (Submitted).
  • Kim W, Bennett EJ, Huttlin EL, et al. (2011). Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340.
  • Kirkin V, McEwan DG, Novak I, Dikic I. (2009). A role for ubiquitin in selective autophagy. Mol Cell 34:259–269.
  • Klionsky DJ, Codogno P, Cuervo AM, et al. (2010). A comprehensive glossary of autophagy-related molecules and processes. Autophagy 6:438–448.
  • Kloetzel PM. (2004). The proteasome and MHC class I antigen processing. Biochim Biophys Acta 1695:225–233.
  • Komatsu M, Waguri S, Koike M, et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149–1163.
  • Komatsu M. (2012). Liver autophagy: physiology and pathology. J Biochem 152:5–15.
  • Komatsu M, Kageyama S, Ichimura Y. (2012). p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66:457–462.
  • Korsmeyer KK, Davoll S, Figueiredo-Pereira ME, Correia MA. (1999). Proteolytic degradation of heme-modified hepatic cytochromes P450: A role for phosphorylation, ubiquitination, and the 26S proteasome? Arch Biochem Biophys 365:31–44.
  • Kostova Z, Tsai YC, Weissman AM. (2007). Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Semin Cell Dev Biol 18:770–779.
  • Krick R, Bremer S, Welter E, et al. (2010). Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol 190:965–973.
  • Kulathu Y, Komander D. (2012). Atypical ubiquitylation - the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523.
  • Lamark T, Kirkin V, Dikic I, Johansen T. (2009). NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8:1986–1990.
  • Lee DH, Goldberg AL. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403.
  • Lee CM, Kim BY, Li L, Morgan ET. (2008). Nitric oxide-dependent proteasomal degradation of cytochrome P450 2B proteins. J Biol Chem 283:889–898.
  • Leeder JS, Gaedigk A, Lu X, Cook VA. (1996). Epitope mapping studies with human anti-cytochrome P450 3A antibodies. Mol Pharmacol 49:234–243.
  • Li W, Tu D, Brunger AT, Ye Y. (2007). A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446:333–337.
  • Li W, Tu D, Li L, et al. (2009). Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc Natl Acad Sci USA 106:3722–3727.
  • Liao M, Zgoda VG, Murray BP, Correia MA. (2005). Vacuolar degradation of rat liver CYP2B1 in Saccharomyces cerevisiae: further validation of the yeast model and structural implications for the degradation of mammalian endoplasmic reticulum P450 proteins. Mol Pharmacol 67:1460–1469.
  • Liao M, Faouzi S, Karyakin A, Correia MA. (2006). Endoplasmic reticulum-associated degradation of cytochrome P450 CYP3A4 in Saccharomyces cerevisiae: further characterization of cellular participants and structural determinants. Mol Pharmacol 69:1897–1904.
  • Liao M, Kang P, Murray BP, Correia MA. (2010) Cytochrome P450 degradation and its clinical relevance. In: Lu C, Li AP, eds. Enzyme Inhibition in Drug Discovery & Development. NJ: John Wiley & Sons, 363–406.
  • Lin HL, Kenaan C, Zhang H, Hollenberg PF. (2012). Reaction of human cytochrome P450 3A4 with peroxynitrite: nitrotyrosine formation on the proximal side impairs its interaction with NADPH-cytochrome P450 reductase. Chem Res Toxicol 25:2642–2653.
  • Linares JF, Duran A, Yajima T, et al. (2013). K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 51:283–296.
  • Lipson C, Alalouf G, Bajorek M, et al. (2008). A proteasomal ATPase contributes to dislocation of endoplasmic reticulum-associated degradation (ERAD) substrates. J Biol Chem 283:7166–7175.
  • Lohr JB, Kuhn-Velten WN. (1997). Protein phosphorylation changes ligand-binding efficiency of cytochrome P450c17 (CYP17) and accelerates its proteolytic degradation: putative relevance for hormonal regulation of CYP17 activity. Biochem Biophys Res Commun 231:403–408.
  • Lu JP, Wang Y, Sliter DA, et al. (2011). RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation. J Biol Chem 286:24426–24433.
  • Lu Y, Lee BH, King RW, et al. (2015). Substrate degradation by the proteasome: a single-molecule kinetic analysis. Science 348:1250834.
  • Madrigal-Matute J, Cuervo AM. (2015). Regulation of liver metabolism by autophagy. Gastroenterology 150:328–339.
  • Majeski AE, Dice JF. (2004). Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36:2435–2444.
  • Manley S, Williams JA, Ding WX. (2013). Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 238:525–538.
  • Masaki R, Yamamoto A, Tashiro Y. (1987). Cytochrome P-450 and NADPH-cytochrome P-450 reductase are degraded in the autolysosomes in rat liver. J Cell Biol 104:1207–1215.
  • McDonough H, Patterson C. (2003). CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8:303–308.
  • Metzger MB, Hristova VA, Weissman AM. (2012). HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537.
  • Meyer HH, Shorter JG, Seemann J, et al. (2000). A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181–2192.
  • Meyer H, Bug M, Bremer S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 14:117–123.
  • Miao H, Jiang W, Ge L, et al. (2010). Tetra-glutamic acid residues adjacent to Lys248 in HMG-CoA reductase are critical for the ubiquitination mediated by gp78 and UBE2G2. Acta Biochim Biophys Sin (Shanghai) 42:303–310.
  • Michalek MT, Grant EP, Gramm C, et al. (1993). A role for the ubiquitin-dependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 363:552–554.
  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. (2008). Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075.
  • Mizushima N, Yoshimori T, Levine B. (2010). Methods in mammalian autophagy research. Cell 140:313–326.
  • Monaco JJ. (1995). Pathways for the processing and presentation of antigens to T cells. J Leukoc Biol 57:543–547.
  • Morishima Y, Peng HM, Lin HL, et al. (2005). Regulation of cytochrome P450 2E1 by heat shock protein 90-dependent stabilization and CHIP-dependent proteasomal degradation. Biochemistry 44:16333–16340.
  • Morito D, Hirao K, Oda Y, et al. (2008). Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of CFTRDeltaF508. Mol Biol Cell 19:1328–1336.
  • Mukhopadhyay D, Riezman H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315:201–205.
  • Murata S, Minami Y, Minami M, et al. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138.
  • Murray BP, Correia MA. (2001). Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae? Arch Biochem Biophys 393:106–116.
  • Murray BP, Zgoda VG, Correia MA. (2002). Native CYP2C11: heterologous expression in Saccharomyces cerevisiae reveals a role for vacuolar proteases rather than the proteasome system in the degradation of this endoplasmic reticulum protein. Mol Pharmacol 61:1146–1153.
  • Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL. (2008). Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132:101–112.
  • Nezis IP, Stenmark H. (2012). p62 at the interface of autophagy, oxidative stress signaling, and cancer. Antioxid Redox Signal 17:786–793.
  • Noda NN, Kumeta H, Nakatogawa H, et al. (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–1218.
  • Ohsumi Y. (2014). Historical landmarks of autophagy research. Cell Res 24:9–23.
  • Olzmann JA, Li L, Chudaev MV, et al. (2007). Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol 178:1025–1038.
  • Olzmann JA, Kopito RR, Christianson JC. (2013). The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb Perspect Biol 5:013185.
  • Pabarcus MK, Hoe N, Sadeghi S, et al. (2009). CYP3A4 ubiquitination by gp78 (the tumor autocrine motility factor receptor, AMFR) and CHIP E3 ligases. Arch Biochem Biophys 483:66–74.
  • Pankiv S, Clausen TH, Lamark T, et al. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145.
  • Peng J, Schwartz D, Elias JE, et al. (2003). A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926.
  • Peng HM, Morishima Y, Jenkins GJ, et al. (2004). Ubiquitylation of neuronal nitric-oxide synthase by CHIP, a chaperone-dependent E3 ligase. J Biol Chem 279:52970–52977.
  • Pickart CM, Fushman D. (2004). Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616.
  • Pickart CM, Cohen RE. (2004). Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187.
  • Porubsky PR, Meneely KM, Scott EE. (2008). Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J Biol Chem 283:33698–33707.
  • Puissant A, Fenouille N, Auberger P. (2012). When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2:397–413.
  • Rabinowitz JD, White E. (2010). Autophagy and metabolism. Science 330:1344–1348.
  • Ravid T, Kreft SG, Hochstrasser M. (2006). Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25:533–543.
  • Rechsteiner M. (2005) The 26S proteasome. In: Protein Degradation Mayer J, Ciechanover A, Rechsteiner M, eds. Vol. 1. Weinheim: Wiley-VCH Veralag GmbH & Co. KGaA, 220–247
  • Redlich G, Zanger UM, Riedmaier S, et al. (2008). Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 7:4678–4688.
  • Reynald RL, Sansen S, Stout CD, Johnson EF. (2012). Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J Biol Chem 287:44581–44591.
  • Richly H, Rape M, Braun S, et al. (2005). A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84.
  • Riley RJ, Smith G, Wolf CR, et al. (1993). Human anti-endoplasmic reticulum autoantibodies produced in aromatic anticonvulsant hypersensitivity reactions recognise rodent CYP3A proteins and a similarly regulated human P450 enzyme(s). Biochem Biophys Res Commun 191:32–40.
  • Roberts BJ, Song BJ, Soh Y, et al. (1995). Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem 270:29632–29635.
  • Roberts BJ. (1997). Evidence of proteasome-mediated cytochrome P-450 degradation. J Biol Chem 272:9771–9778.
  • Rock KL, Gramm C, Rothstein L, et al. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771.
  • Ronis MJ, Ingelman-Sundberg M. (1989). Acetone-dependent regulation of cytochrome P-450j (IIE1) and P-450b (IIB1) in rat liver. Xenobiotica 19:1161–1165.
  • Ronis MJ, Johansson I, Hultenby K, et al. (1991). Acetone-regulated synthesis and degradation of cytochrome P450E1 and cytochrome P4502B1 in rat liver [corrected]. Eur J Biochem 198:383–389.
  • Rosser MF, Washburn E, Muchowski PJ, et al. (2007). Chaperone functions of the E3 ubiquitin ligase CHIP. J Biol Chem 282:22267–22277.
  • Rowland P, Blaney FE, Smyth MG, et al. (2006). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.
  • Rubinsztein DC, Codogno P, Levine B. (2012). Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11:709–730.
  • Schattenberg JM, Czaja MJ. (2012). Regulation of the effects of CYP2E1-induced oxidative stress by JNK signaling. Redox Biol 3:7–15.
  • Schattenberg JM, Wang Y, Singh R, et al. (2005). Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J Biol Chem 280:9887–9894.
  • Schmiedlin-Ren P, Edwards DJ, Fitzsimmons ME, et al. (1997). Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Decreased enterocyte CYP3A4 concentration and mechanism-based inactivation by furanocoumarins. Drug Metab Dispos 25:1228–1233.
  • Scott EE, He YA, Wester MR, et al. (2003). An open conformation of mammalian cytochrome P450 2B4 at 1.6-A resolution. Proc Natl Acad Sci USA 100:13196–13201.
  • Scott EE, White MA, He YA, et al. (2004). Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279:27294–27301.
  • Seibenhener ML, Babu JR, Geetha T, et al. (2004). Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068.
  • Sevrioukova IF, Poulos TL. (2012). Structural and mechanistic insights into the interaction of cytochrome P4503A4 with bromoergocryptine, a type I ligand. J Biol Chem 287:3510–3517.
  • Shah MB, Pascual J, Zhang Q, et al. (2011). Structures of Cytochrome P450 2B6 bound to 4-Benzylpyridine and 4-(4-Nitrobenzyl)pyridine: Insight into inhibitor binding and rearrangement of active site side chains. Mol Pharmacol 80:1047–1055.
  • Shin Y, Klucken J, Patterson C, et al. (2005). The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734.
  • Shmueli A, Tsai YC, Yang M, et al. (2009). Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. Biochem Biophys Res Commun 390:758–762.
  • Slobodkin MR, Elazar Z. (2013). The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 55:51–64.
  • Sohn DH, Yun YP, Park KS, et al. (1991). Post-translational reduction of cytochrome P450IIE by CCl4, its substrate. Biochem Biophys Res Commun 179:449–454.
  • Song BJ, Veech RL, Park SS, et al. (1989). Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization. J Biol Chem 264:3568–3572.
  • Stolz A, Ernst A, Dikic I. (2014). Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501.
  • Strnad P, Zatloukal K, Stumptner C, et al. (2008). Mallory-Denk-bodies: lessons from keratin-containing hepatic inclusion bodies. Biochim Biophys Acta 1782:764–774.
  • Taxis C, Hitt R, Park SH, et al. (2003). Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278:35903–35913.
  • Thervet E, Legendre C, Beaune P, Anglicheau D. (2005). Cytochrome P450 3A polymorphisms and immunosuppressive drugs. Pharmacogenomics 6:37–47.
  • Tierney DJ, Haas AL, Koop DR. (1992). Degradation of cytochrome P450 2E1: selective loss after labilization of the enzyme. Arch Biochem Biophys 293:9–16.
  • Tresse E, Salomons FA, Vesa J, et al. (2010). VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6:217–227.
  • Udeshi ND, Mertins P, Svinkina T, Carr SA. (2012). Large-scale identification of ubiquitination sites by mass spectrometry. Nat Protoc 8:1950–1960.
  • Udeshi ND, Svinkina T, Mertins P, et al. (2013). Refined preparation and use of anti-diglycine remnant (K-ɛ-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 12:825–831.
  • Uetrecht JP. (1999). New concepts in immunology relevant to idiosyncratic drug reactions: the “danger hypothesis” and innate immune system. Chem Res Toxicol 12:387–395.
  • Uetrecht J. (2005). Current trends in drug-induced autoimmunity. Autoimmun Rev 4:309–314.
  • Vashist S, Ng DT. (2004). Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52.
  • Vembar SS, Brodsky JL. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–957.
  • von Muhlinen N, Thurston T, Ryzhakov G, et al. (2010). NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy 6:288–289.
  • Vosper JM, McDowell GS, Hindley CJ, et al. (2009). Ubiquitylation on canonical and non-canonical sites targets the transcription factor neurogenin for ubiquitin-mediated proteolysis. J Biol Chem 284:15458–15468.
  • Wagner SA, Beli P, Weinert BT, et al. (2012). Proteomic analyses reveal divergent ubiquitylation site patterns in murine tissues. Mol Cell Proteomics 11:1578–1585.
  • Wang HF, Figueiredo Pereira ME, Correia MA. (1999). Cytochrome P450 3A degradation in isolated rat hepatocytes: 26S proteasome inhibitors as probes. Arch Biochem Biophys 365:45–53.
  • Wang X, Herr RA, Chua WJ, et al. (2007). Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J Cell Biol 177:613–624.
  • Wang Y, Guan S, Acharya P, et al. (2011). Ubiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination. J Biol Chem 286:9443–9456.
  • Wang X, Medzihradszky KF, Maltby D, Correia MA. (2001). Phosphorylation of native and heme-modified CYP3A4 by protein kinase C: a mass spectrometric characterization of the phosphorylated peptides. Biochemistry 40:11318–11326.
  • Wang Y, Liao M, Hoe N, et al. (2009). A role for protein phosphorylation in cytochrome P450 3A4 ubiquitin-dependent proteasomal degradation. J Biol Chem 284:5671–5684.
  • Wang Y, Guan S, Acharya P, et al. (2012). Multisite phosphorylation of human liver cytochrome P450 3A4 enhances Its gp78- and CHIP-mediated ubiquitination: a pivotal role of its Ser-478 residue in the gp78-catalyzed reaction. Mol Cell Proteomics 11:M111. 010132.
  • Wang A, Savas U, Hsu MH, et al. (2012). Crystal structure of human cytochrome P450 2D6 with prinomastat bound. J Biol Chem 287:10834–10843.
  • Wang Y, Ha SW, Zhang T, et al. (2014). Polyubiquitylation of AMF requires cooperation between the gp78 and TRIM25 ubiquitin ligases. Oncotarget 5:2044–2051.
  • Wang Y, Kim SM, Trnka MJ, et al. (2015). Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 290:3308–3332.
  • Watkins PB, Wrighton SA, Schuetz EG, et al. (1986). Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture. J Biol Chem 261:6264–6271.
  • Wen X, Klionsky DJ. (2016). An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699.
  • Wester MR, Yano JK, Schoch GA, et al. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279:35630–35637.
  • Williams PA, Cosme J, Ward A, et al. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
  • Wojcik C, Rowicka M, Kudlicki A, et al. (2006). Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol Biol Cell 17:4606–4618.
  • Woodman PG. (2003). p97, a protein coping with multiple identities. J Cell Sci 116:4283–4290.
  • Wu D, Cederbaum AI. (2013). Inhibition of autophagy promotes CYP2E1-dependent toxicity in HepG2 cells via elevated oxidative stress, mitochondria dysfunction and activation of p38 and JNK MAPK. Redox Biol 1:552–565.
  • Xia D, Tang WK, Ye Y. (2016). Structure and function of the AAA + ATPASE p97/Cdc48p. Gene 583:67–77.
  • Xu L, Chen Y, Pan Y, et al. (2009). Prediction of human drug-drug interactions from time-dependent inactivation of CYP3A4 in primary hepatocytes using a population-based simulator. Drug Metab Dispos 37:2330–2339.
  • Xu G, Paige JS, Jaffrey SR. (2010). Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28:868–873.
  • Yang J, Liao M, Shou M, et al. (2008). Cytochrome p450 turnover: regulation of synthesis and degradation, methods for determining rates, and implications for the prediction of drug interactions. Curr Drug Metab 9:384–394.
  • Yang Z, Klionsky DJ. (2009). An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335:1–32.
  • Yano JK, Wester MR, Schoch GA, et al. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279:38091–38094.
  • Ye Y, Shibata Y, Kikkert M, et al. (2005). Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc Natl Acad Sci USA 102:14132–14138.
  • Ying Z, Wang H, Fan H, Wang G. (2011). The endoplasmic reticulum (ER)-associated degradation system regulates aggregation and degradation of mutant neuroserpin. J Biol Chem 286:20835–20844.
  • Younger JM, Chen L, Ren HY, et al. (2006). Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126:571–582.
  • Zhang T, Kho DH, Wang Y, et al. (2015). Gp78, an E3 ubiquitin ligase acts as a gatekeeper suppressing nonalcoholic steatohepatitis (NASH) and liver cancer. PLoS One 10:e0118448.
  • Zhao C, Gao Q, Roberts AG, et al. (2012). Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). Biochemistry 51:9488–9500.
  • Zhukov A, Werlinder V, Ingelman-Sundberg M. (1993). Purification and characterization of two membrane bound serine proteinases from rat liver microsomes active in degradation of cytochrome P450. Biochem Biophys Res Commun 197:221–228.
  • Zhukov A, Ingelman-Sundberg M. (1999). Relationship between cytochrome P450 catalytic cycling and stability: fast degradation of ethanol-inducible cytochrome P450 2E1 (CYP2E1) in hepatoma cells is abolished by inactivation of its electron donor NADPH-cytochrome P450 reductase. Biochem J 340:453–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.