661
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs

, &
Pages 379-404 | Received 15 Jun 2016, Accepted 04 Aug 2016, Published online: 31 Aug 2016

References

  • Addya S, Anandatheerthavarada HK, Biswas G, et al. (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: A novel pathway for the biogenesis of hepatic mitochondrial P450MT2. J Cell Biol 139:589–599.
  • Agarwal V, Kommaddi RP, Valli K, et al. (2008). Drug metabolism in human brain: High levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS One 3:e2337.
  • Anandatheerthavarada HK, Addya S, Dwivedi RS, et al. (1997). Localization of multiple forms of inducible cytochromes P450 in rat liver mitochondria: Immunological characteristics and patterns of xenobiotic substrate metabolism. Arch Biochem Biophys 339:136–150.
  • Anandatheerthavarada HK, Shankar SK, Bhamre S, et al. (1993). Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment. Brain Res 601:279–285.
  • Avadhani NG, Sangar MC, Bansal S, Bajpai P. (2011). Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: The concept of chimeric signals. FEBS J 278:4218–4229.
  • Bajpai P, Sangar MC, Singh S, et al. (2013). Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: Implications in Parkinson's disease. J Biol Chem 288:4436–4451.
  • Bajpai P, Srinivasan S, Ghosh J, et al. (2014). Targeting of splice variants of human cytochrome P450 2C8 (CYP2C8) to mitochondria and their role in arachidonic acid metabolism and respiratory dysfunction. J Biol Chem 289:29614–29630.
  • Baldwin RM, Ohlsson S, Pedersen RS, et al. (2008). Increased omeprazole metabolism in carriers of the CYP2C19*17 allele; a pharmacokinetic study in healthy volunteers. Br J Clin Pharmacol 65:767–774.
  • Bansal S, Anandatheerthavarada HK, Prabu GK, et al. (2013). Human cytochrome P450 2E1 mutations that alter mitochondrial targeting efficiency and susceptibility to ethanol-induced toxicity in cellular models. J Biol Chem 288:12627–12644.
  • Bansal S, Leu AN, Gonzalez FJ, et al. (2014). Mitochondrial targeting of cytochrome P450 (CYP) 1B1 and its role in polycyclic aromatic hydrocarbon-induced mitochondrial dysfunction. J Biol Chem 289:9936–9951.
  • Bansal S, Liu CP, Sepuri NB, et al. (2010). Mitochondria-targeted cytochrome P450 2E1 induces oxidative damage and augments alcohol-mediated oxidative stress. J Biol Chem 285:24609–24619.
  • Bar-Nun S, Kreibich G, Adesnik M, et al. (1980). Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 77:965–969.
  • Barbeau A, Cloutier T, Roy M, et al. (1985). Ecogenetics of Parkinson's disease: 4-hydroxylation of debrisoquine. Lancet 2:1213–1216.
  • Bertilsson L. (2007). Metabolism of antidepressant and neuroleptic drugs by cytochrome P450s: Clinical and interethnic aspects. Clin Pharmacol Ther 82:606–609.
  • Bertilsson L, Alm C, De Las Carreras C, et al. (1989). Debrisoquine hydroxylation polymorphism and personality. Lancet 1:555.
  • Bhagwat SV, Biswas G, Anandatheerthavarada HK, et al. (1999). Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 274:24014–24022.
  • Bhagwat SV, Boyd MR, Ravindranath V. (1995a). Brain mitochondrial cytochrome P450: Xenobiotic metabolism, presence of multiple forms and their selective inducibility. Arch Biochem Biophys 320:73–83.
  • Bhagwat SV, Boyd MR, Ravindranath V. (1995b). Rat brain cytochrome P450: Reassessment of monooxygenase activities and cytochrome P450 levels. Drug Metab Dispos 23:651–654.
  • Bhagwat SV, Boyd MR, Ravindranath V. (2000). Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria. Biochem Pharmacol 59:573–582.
  • Bhamre S, Anandatheerthavarada HK, Shankar SK, et al. (1993). Purification of multiple forms of cytochrome P450 from a human brain and reconstitution of catalytic activities. Arch Biochem Biophys 301:251–255.
  • Bhamre S, Anandatheerthavarada HK, Shankar SK, Ravindranath V. (1992). Microsomal cytochrome P450 in human brain regions. Biochem Pharmacol 44:1223–1225.
  • Boopathi E, Anandatheerthavarada HK, Bhagwat SV, et al. (2000). Accumulation of mitochondrial P450MT2, NH2-terminal truncated cytochrome P4501A1 in rat brain during chronic treatment with beta-naphthoflavone. A role in the metabolism of neuroactive drugs. J Biol Chem 275:34415–34423.
  • Boopathi E, Srinivasan S, Fang JK, Avadhani NG. (2008). Bimodal protein targeting through activation of cryptic mitochondrial targeting signals by an inducible cytosolic endoprotease. Mol Cell 32:32–42.
  • Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. (2013). Differential expression of human cytochrome P450 enzymes from the CYP3A subfamily in the brains of alcoholics and drug free controls. Drug Metab Dispos 41:1187–1194.
  • Booth Depaz IM, Toselli F, Wilce PA, Gillam EM. (2015). Differential expression of cytochrome P450 enzymes from the CYP2C subfamily in the human brain. Drug Metab Dispos 43:353–357.
  • Bornheim LM, Kim KY, Chen B, Correia MA. (1995). Microsomal cytochrome P450-mediated liver and brain anandamide metabolism. Biochem Pharmacol 50:677–686.
  • Bromek E, Haduch A, Daniel WA. (2010). The ability of cytochrome P450 2D isoforms to synthesize dopamine in the brain: An in vitro study. Eur J Pharmacol 626:171–178.
  • Bromek E, Haduch A, Golembiowska K, Daniel WA. (2011). Cytochrome P450 mediates dopamine formation in the brain in vivo. J Neurochem 118:806–815.
  • Bylund J, Ericsson J, Oliw EH. (1998). Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography mass spectrometry with ion trap MS2. Anal Biochem 265:55–68.
  • Caraco Y, Tateishi T, Guengerich FP, Wood AJJ. (1995). Microsomal codeine N-demethylation: Cosegregation with CYP3A4 activity. Drug Metab Dispos 24:761–764.
  • Carver KA, Lourim D, Tryba AK, Harder DR. (2014). Rhythmic expression of cytochrome P450 epoxygenases CYP4X1 and CYP2C11 in the rat brain and vasculature. Am J Physiol Cell Physiol 307:C989–C998.
  • Celec P, Ostatnikova D, Hodosy J. (2015). On the effects of testosterone on brain behavioral functions. Front Neurosci 9:12.
  • Chahin A, Peiffer J, Olry JC, et al. (2013). EROD activity induction in peripheral blood lymphocytes, liver and brain tissues of rats orally exposed to polycyclic aromatic hydrocarbons. Food Chem Toxicol 56:371–380.
  • Chen ZR, Irvine RJ, Bochner F, Somogyi AA. (1990). Morphine formation from codeine in rat brain: A possible mechanism of codeine analgesia. Life Sci 46:1067–1074.
  • Chen ZR, Somogyi AA, Reynolds G, Bochner F. (1991). Disposition and metabolism of codeine after single and chronic doses in one poor and seven extensive metabolisers. Br J Clin Pharmacol 31:381–390.
  • Cheng J, Zhen Y, Miksys S, et al. (2013). Potential role of CYP2D6 in the central nervous system. Xenobiotica 43:973–984.
  • Cheng ZN, Zhou HH. (2000). Contribution of genetic variations in estradiol biosynthesis and metabolism enzymes to osteoporosis. Acta Pharmacol Sin 21:587–590.
  • Chiba K, Trevor A, Castagnoli N, Jr. (1984). Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578.
  • Chinta SJ, Kommaddi RP, Turman CM, et al. (2005). Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain: Presence of a splice variant form in human brain. J Neurochem 93:724–736.
  • Chinta SJ, Pai HV, Upadhya SC, et al. (2002). Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. Brain Res Mol Brain Res 103:49–61.
  • Choudhary D, Jansson I, Stoilov I, et al. (2004). Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1B1. Drug Metab Dispos 32:840–847.
  • Choudhary D, Jansson I, Stoilov I, et al. (2005). Expression patterns of mouse and human CYP orthologs (families 1-4) during development and in different adult tissues. Arch Biochem Biophys 436:50–61.
  • Chuang SS, Helvig C, Taimi M, et al. (2004). CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. J Biol Chem 279:6305–6314.
  • Citterio A, Arnoldi A, Panzeri E, et al. (2014). Mutations in CYP2U1, DDHD2 and GBA2 genes are rare causes of complicated forms of hereditary spastic paraparesis. J Neurol 261:373–381.
  • Cobice DF, Goodwin RJ, Andren PE, et al. (2015). Future technology insight: Mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol 172:3266–3283.
  • Coleman T, Ellis SW, Martin IJ, et al. (1996). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is N-demethylated by cytochromes P450 2D6, 1A2 and 3A4 - implications for susceptibility to Parkinson's disease. J Pharmacol Exp Ther 277:685–690.
  • Conroy JL, Fang C, Gu J, et al. (2010). Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nat Neurosci 13:284–286.
  • Croom EL, Wallace AD, Hodgson E. (2010). Human variation in CYP-specific chlorpyrifos metabolism. Toxicology 276:184–191.
  • Cuttle L, Munns AJ, Hogg NA, et al. (2000). Phenytoin metabolism by human cytochrome P450: Involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos 28:945–950.
  • Dasari VR, Anandatheerthavarada HK, Robin MA, et al. (2006). Role of protein kinase c-mediated protein phosphorylation in mitochondrial translocation of mouse cyp1a1, which contains a non-canonical targeting signal. J Biol Chem 281:30834–30847.
  • Dauchy S, Dutheil F, Weaver RJ, et al. (2008). ABC transporters, cytochromes P450 and their main transcription factors: Expression at the human blood-brain barrier. J Neurochem 107:1518–1528.
  • Dayer P, Desmeules J, Leemann T, Striberni R. (1988). Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 DBL/BUFI). Biochem Biophys Res Commun 152:411–416.
  • Deng Y, Newman B, Dunne MP, et al. (2004). Further evidence that interactions between CYP2D6 and pesticide exposure increase risk for Parkinson's disease. Ann Neurol 55:897.
  • Dong H, Dalton TP, Miller ML, et al. (2009). Knock-in mouse lines expressing either mitochondrial or microsomal cyp1a1: Differing responses to dietary benzo[a]pyrene as proof of principle. Mol Pharmacol 75:555–567.
  • Donnerer J, Oka K, Brossi A, et al. (1986). Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci U S A 83:4566–4567.
  • Doostzadeh J, Morfin R. (1997). Effects of cytochrome P450 inhibitors and of steroid hormones on the formation of 7-hydroxylated metabolites of pregnenolone in mouse brain microsomes. J Endocrinol 155:343–350.
  • Ducassou L, Jonasson G, Dhers L, et al. (2015). Expression in yeast, new substrates, and construction of a first 3D model of human orphan cytochrome P450 2U1: Interpretation of substrate hydroxylation regioselectivity from docking studies. Biochim Biophys Acta 1850:1426–1437.
  • Dutheil F, Dauchy S, Diry M, et al. (2009). Xenobiotic-metabolizing enzymes and transporters in the normal human brain: Regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos 37:1528–1538.
  • Edwards RJ, Price RJ, Watts PS, et al. (2003). Induction of cytochrome P450 enzymes in cultured precision-cut human liver slices. Drug Metab Dispos 31:282–288.
  • Ekins S, Wrighton SA. (1999). The role of CYP2B6 in human xenobiotic metabolism. Drug Metab Rev 31:719–754.
  • Elbaz A, Levecque C, Clavel J, et al. (2004). CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease. Ann Neurol 55:430–434.
  • Elison C, Elliott HW. (1963). N- and O-demethylation of some narcotic analgesics by brain slices from male and female long-evans rats. Biochem Pharmacol 12:1363–1366.
  • Fang C, Bolivar VJ, Gu J, et al. (2012). Neurobehavioral abnormalities in a brain-specific NADPH-cytochrome P450 reductase knockout mouse model. Neuroscience 218:170–180.
  • Fang J, Bourin M, Baker GB. (1999). Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol 359:147–151.
  • Fang WB, Chang Y, Mccance-Katz EF, Moody DE. (2009). Determination of naloxone and nornaloxone (noroxymorphone) by high-performance liquid chromatography-electrospray ionization- tandem mass spectrometry. J Anal Toxicol 33:409–417.
  • Fang J, Mckay G, Song J, et al. (2001). In vitro characterization of the metabolism of haloperidol using recombinant cytochrome P450 enzymes and human liver microsomes. Drug Metab Dispos 29:1638–1643.
  • Farin FM, Omiecinski CJ. (1993). Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue. J Toxicol Environ Health 40:317–335.
  • Ferguson CS, Miksys S, Palmour RM, Tyndale RF. (2012). Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys. J Pharmacol Exp Ther 343:628–637.
  • Ferguson CS, Miksys S, Palmour RM, Tyndale RF. (2013). Ethanol self-administration and nicotine treatment induce brain levels of CYP2B6 and CYP2E1 in African green monkeys. Neuropharmacology 72:74–81.
  • Fishman J, Hahn EF, Norton BI. (1976). N-demethylation of morphine in rat brain is localised in sites with high opiate receptor content. Nature 261:64–65.
  • Fonné-Pfister R, Bargetzi MJ, Meyer UA. (1987). MPTP, the neurotoxin inducing Parkinson's disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450BUFI, P450DBL) catalyzing debrisoquine 4-hydroxylation. Biochem Biophys Res Commun 148:1144–1150.
  • Gagliano A, Germano E, Pustorino G, et al. (2004). Risperidone treatment of children with autistic disorder: Effectiveness, tolerability, and pharmacokinetic implications. J Child Adolesc Psychopharmacol 14:39–47.
  • Garcia KL, Coen K, Miksys S, et al. (2015). Effect of brain CYP2B inhibition on brain nicotine levels and nicotine self-administration. Neuropsychopharmacology 40:1910–1918.
  • Gehlhaus M, Schmitt N, Volk B, Meyer RP. (2007). Antiepileptic drugs affect neuronal androgen signaling via a cytochrome P450-dependent pathway. J Pharmacol Exp Ther 322:550–559.
  • Gervot L, Rochat B, Gautier JC, et al. (1999). Human CYP2B6: Expression, inducibility and catalytic activities. Pharmacogenetics 9:295–306.
  • Ghersi-Egea JF, Perrin R, Leininger-Muller B, et al. (1993). Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol 45:647–658.
  • Ghosh C, Gonzalez-Martinez J, Hossain M, et al. (2010). Pattern of P450 expression at the human blood-brain barrier: Roles of epileptic condition and laminar flow. Epilepsia 51:1408–1417.
  • Gilham DE, Cairns W, Paine MJ, et al. (1997). Metabolism of MPTP by cytochrome P4502D6 and the demonstration of 2D6 mRNA in human foetal and adult brain by in situ hybridization. Xenobiotica 27:111–125.
  • Goldstein JA, Faletto MB, Romkessparks M, et al. (1994). Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans. Biochemistry 33:1743–1752.
  • Gonzalez FJ, Fang ZZ, Ma X. (2015). Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol 11:869–881.
  • Gonzalez I, Penas-Lledo EM, Perez B, et al. (2008). Relation between CYP2D6 phenotype and genotype and personality in healthy volunteers. Pharmacogenomics 9:833–840.
  • Graves JP, Gruzdev A, Bradbury JA, et al. (2015). Quantitative polymerase chain reaction analysis of the mouse CYP2J subfamily: Tissue distribution and regulation. Drug Metab Dispos 43:1169–1180.
  • Grobe N, Zhang B, Fisinger U, et al. (2009). Mammalian cytochrome P450 enzymes catalyze the phenol-coupling step in endogenous morphine biosynthesis. J Biol Chem 284:24425–24431.
  • Guengerich FP. (1997). Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem-Biol Int 106:161–182.
  • Guengerich FP. (2015). Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, ed. Cytochrome P450 structure, mechanism, and biochemistry. 4th ed. Cham: Springer International Publishing.
  • Guengerich FP, Cheng Q. (2011). Orphans in the human cytochrome P450 superfamily: Approaches to discovering functions and relevance in pharmacology. Pharmacol Rev 63:684–699.
  • Haduch A, Bromek E, Kot M, et al. (2015). The cytochrome P450 2D-mediated formation of serotonin from 5-methoxytryptamine in the brain in vivo: A microdialysis study. J Neurochem 133:83–92.
  • Haduch A, Bromek E, Sadakierska-Chudy A, et al. (2013). The catalytic competence of cytochrome P450 in the synthesis of serotonin from 5-methoxytryptamine in the brain: An in vitro study. Pharmacol Res 67:53–59.
  • Hall B, Limaye A, Kulkarni AB. (2009). Overview: Generation of gene knockout mice. Curr Protoc Cell Biol Chapter 19: Unit 19 2 2 1-7.
  • Hanrieder J, Phan NT, Kurczy ME, Ewing AG. (2013). Imaging mass spectrometry in neuroscience. ACS Chem Neurosci 4:666–679.
  • Hedlund E, Wyss A, Kainu T, et al. (1996). Cytochrome P4502D4 in the brain: Specific neuronal regulation by clozapine and toluene. Mol Pharmacol 50:342–350.
  • Hersman EM, Bumpus NN. (2014). A targeted proteomics approach for profiling murine cytochrome P450 expression. J Pharmacol Exp Ther 349:221–228.
  • Hesse LM, He P, Krishnaswamy S, et al. (2004). Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238.
  • Hijazi Y, Boulieu R. (2002). Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858.
  • Hiroi T, Imaoka S, Funae Y. (1998). Dopamine formation from tyramine by CYP2D6. Biochem Biophys Res Commun 249:838–843.
  • Hiroi T, Kishimoto W, Chow T, et al. (2001). Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142:3901–3908.
  • Hoshino U, Kawasaki H. (1995). Urinary 6 beta-hydroxycortisol excretion in patients with alcoholic liver disease. Res Commun Alcohol Subst Abuse 16:115–124.
  • Hough LB, Nalwalk JW, Yang J, et al. (2011). Brain P450 epoxygenase activity is required for the antinociceptive effects of improgan, a nonopioid analgesic. Pain 152:878–887.
  • Howard LA, Miksys S, Hoffmann E, et al. (2003). Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 138:1376–1386.
  • Hutchinson MR, Menelaou A, Foster DJ, et al. (2004). CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br J Clin Pharmacol 57:287–297.
  • Ishii G, Suzuki A, Oshino S, et al. (2007). CYP2C19 polymorphism affects personality traits of Japanese females. Neurosci Lett 411:77–80.
  • Jacqz-Aigrain E, Funck-Brentano C, Cresteil T. (1993). CYP2D6- and CYP3A-dependent metabolism of dextromethorphan in humans. Pharmacogenetics 3:197–204.
  • Jiang R, Yamaori S, Takeda S, et al. (2011). Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes. Life Sci 89:165–170.
  • Jolivalt C, Minn A, Vincent-Viry M, et al. (1995). Dextromethorphan O-demethylase activity in rat brain microsomes. Neurosci Lett 187:65–68.
  • Jones G, Prosser DE, Kaufmann M. (2014). Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55:13–31.
  • Joshi M, Tyndale RF. (2006). Regional and cellular distribution of CYP2E1 in monkey brain and its induction by chronic nicotine. Neuropharmacology 50:568–575.
  • Karlgren M, Backlund M, Johansson I, et al. (2004). Characterization and tissue distribution of a novel human cytochrome P450-CYP2U1. Biochem Biophys Res Commun 315:679–685.
  • Karlgren M, Gomez A, Stark K, et al. (2006). Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem Biophys Res Commun 341:451–458.
  • Khokhar JY, Tyndale RF. (2011). Drug metabolism within the brain changes drug response: Selective manipulation of brain CYP2B alters propofol effects. Neuropsychopharmacology 36:692–700.
  • Khokhar JY, Tyndale RF. (2012). Rat brain CYP2B-enzymatic activation of chlorpyrifos to the oxon mediates cholinergic neurotoxicity. Toxicol Sci 126:325–335.
  • Khokhar JY, Tyndale RF. (2014). Intracerebroventricularly and systemically delivered inhibitor of brain CYP2B (C8-xanthate), even after chlorpyrifos exposure, reverses chlorpyrifos activation and toxicity. Toxicol Sci 140:49–60.
  • Kimoto T, Tsurugizawa T, Ohta Y, et al. (2001). Neurosteroid synthesis by cytochrome P450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology 142:3578–3589.
  • Kinobe RT, Parkinson OT, Mitchell DJ, Gillam EM. (2005). P450 2C18 catalyzes the metabolic bioactivation of phenytoin. Chem Res Toxicol 18:1868–1875.
  • Kirchheiner J, Lang U, Stamm T, et al. (2006). Association of CYP2D6 genotypes and personality traits in healthy individuals. J Clin Psychopharmacol 26:440–442.
  • Kirchheiner J, Nickchen K, Bauer M, et al. (2004). Pharmacogenetics of antidepressants and antipsychotics: The contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473.
  • Kirchheiner J, Seeringer A, Godoy AL, et al. (2011). CYP2D6 in the brain: Genotype effects on resting brain perfusion. Mol Psychiatry 16:237, 333–341.
  • Kishimoto W, Hiroi T, Shiraishi M, et al. (2004). Cytochrome P450 2D catalyze steroid 21-hydroxylation in the brain. Endocrinology 145:699–705.
  • Klose TS, Blaisdell JA, Goldstein JA. (1999). Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J Biochem Mol Toxicol 13:289–295.
  • Kobayashi K, Chiba K, Yagi T, et al. (1997). Identification of cytochrome P450 isoforms involved in citalopram N-demethylation by human liver microsomes. J Pharmacol Exp Ther 280:927–933.
  • Kobayashi S, Murray S, Watson D, et al. (1989). The specificity of inhibition of debrisoquine 4-hydroxylase activity by quinidine and quinine in the rat is the inverse of that in man. Biochem Pharmacol 38:2795–2799.
  • Kostrubsky VE, Strom SC, Wood SG, et al. (1995). Ethanol and isopentanol increase CYP3A and CYP2E in primary cultures of human hepatocytes. Arch Biochem Biophys 322:516–520.
  • Kramlinger VM, Alvarado Rojas M, Kanamori T, Guengerich FP. (2015). Cytochrome P450 3A enzymes catalyze the O6-demethylation of thebaine, a key step in endogenous mammalian morphine biosynthesis. J Biol Chem 290:20200–20210.
  • Kreth K, Kovar K, Schwab M, Zanger UM. (2000). Identification of the human cytochromes P450 involved in the oxidative metabolism of “ecstasy”-related designer drugs. Biochem Pharmacol 59:1563–1571.
  • Kunitoh S, Tanaka T, Imaoka S, et al. (1993). Contribution of cytochrome P450s to meos (microsomal ethanol-oxidizing system): A specific and sensitive assay of meos activity by HPLC with fluorescence labeling. Alcohol Alcohol Suppl 1B:63–68.
  • Kurth MC, Kurth JH. (1993). Variant cytochrome P450 CYP2D6 allelic frequencies in Parkinson's disease. Am J Med Genet 48:166–168.
  • Lalovic B, Phillips B, Risler LL, et al. (2004). Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32:447–454.
  • Laterra J, Keep R, Betz LA, Goldstein GW. (1999). Blood-brain barrier. In: Siegel GJ, Agranoff BW, Albers RW, Fisher, SK, Uhler M, eds. Basic neurochemistry: Molecular, cellular and medical aspects 6th ed. Philadelphia (PA): Lippincott-Raven.
  • Lavandera J, Ruspini S, Batlle A, Buzaleh AM. (2015). Cytochrome P450 expression in mouse brain: Specific isoenzymes involved in phase I metabolizing system of porphyrinogenic agents in both microsomes and mitochondria. Biochem Cell Biol 93:102–107.
  • Lee AM, Joshi M, Yue J, Tyndale RF. (2006a). Phenobarbital induces monkey brain CYP2E1 protein but not hepatic CYP2E1, in vitro or in vivo chlorzoxazone metabolism. Eur J Pharm 552:151–158.
  • Lee AM, Miksys S, Palmour R, Tyndale RF. (2006b). CYP2B6 is expressed in African green monkey brain and is induced by chronic nicotine treatment. Neuropharmacology 50:441–450.
  • Leonardi L, Ziccardi L, Marcotulli C, et al. (2016). Pigmentary degenerative maculopathy as prominent phenotype in an italian SPG56/CYP2U1 family. J Neurol 263:781–783.
  • Liangpunsakul S, Kolwankar D, Pinto A, et al. (2005). Activity of CYP2E1 and CYP3A enzymes in adults with moderate alcohol consumption: A comparison with nonalcoholics. Hepatology 41:1144–1150.
  • Lin LY, Kumagai Y, Cho AK. (1992). Enzymatic and chemical demethylenation of (methylenedioxy)amphetamine and (methylenedioxy)methamphetamine by rat brain microsomes. Chem Res Toxicol 5:401–406.
  • Llerena A, Edman G, Cobaleda J, et al. (1993). Relationship between personality and debrisoquine hydroxylation capacity. Suggestion of an endogenous neuroactive substrate or product of the cytochrome P4502D6. Acta Psychiatr Scand 87:23–28.
  • Lu AYH, Coon MJ. (1968). Role of hemoprotein P-450 in fatty acid omega-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243:1331–1332.
  • Lu AYH, Junk KW, Coon MJ. (1969). Resolution of the cytochrome P-450-containing omega-hydroxylation system of liver microsomes into three components. J Biol Chem 244:3714–3721.
  • Lu Y, Mo C, Zeng Z, et al. (2013). CYP2D6*4 allele polymorphism increases the risk of Parkinson's disease: Evidence from meta-analysis. PLoS One 8:e84413.
  • Lu Y, Peng Q, Zeng Z, et al. (2014). CYP2D6 phenotypes and Parkinson's disease risk: A meta-analysis. J Neurol Sci 336: 161–168.
  • Ma X, Idle JR, Krausz KW, Gonzalez FJ. (2005). Metabolism of melatonin by human cytochromes P450. Drug Metab Dispos 33:489–494.
  • Malaplate-Armand C, Leininger-Muller B, Batt AM. (2004). Astrocytic cytochromes P450: An enzyme subfamily critical for brain metabolism and neuroprotection. Rev Neurol (Paris) 160:651–658.
  • Mann A, Miksys SL, Gaedigk A, et al. (2012). The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson's disease patients. Neurobiol Aging 33:2160–2171.
  • Mann A, Miksys S, Lee A, et al. (2008). Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment. Neuropharmacology 55:1147–1155.
  • Mann A, Tyndale RF. (2010). Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 31:1185–1193.
  • Masciullo M, Tessa A, Perazza S, et al. (2016). Hereditary spastic paraplegia: Novel mutations and expansion of the phenotype variability in SPG56. Eur J Paediatr Neurol 20:444–448.
  • McCann SJ, Pond SM, James KM, Le Couteur DG. (1997). The association between polymorphisms in the cytochrome P-450 2D6 gene and Parkinson's disease: A case-control study and meta-analysis. J Neurol Sci 153:50–53.
  • McDougle DR, Kambalyal A, Meling DD, Das A. (2014). Endocannabinoids anandamide and 2-arachidonoylglycerol are substrates for human CYP2J2 epoxygenase. J Pharmacol Exp Ther 351:616–627.
  • McFadyen MCE, Melvin WT, Murray GI. (1998). Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 55:825–830.
  • McMillan DM, Tyndale RF. (2015). Nicotine increases codeine analgesia through the induction of brain CYP2D and central activation of codeine to morphine. Neuropsychopharmacology 40:1804–1812.
  • Meyer RP, Gehlhaus M, Knoth R, Volk B. (2007). Expression and function of cytochrome P450 in brain drug metabolism. Curr Drug Metab 8:297–306.
  • Meyer RP, Gehlhaus M, Schwab R, et al. (2009). Concordant up-regulation of cytochrome P450 Cyp3a11, testosterone oxidation and androgen receptor expression in mouse brain after xenobiotic treatment. J Neurochem 109:670–681.
  • Meyer RP, Hagemeyer CE, Knoth R, et al. (2006). Anti-epileptic drug phenytoin enhances androgen metabolism and androgen receptor expression in murine hippocampus. J Neurochem 96:460–472.
  • Meyer RP, Lindberg RL, Hoffmann F, Meyer UA. (2005). Cytosolic persistence of mouse brain cyp1a1 in chronic heme deficiency. Biol Chem 386:1157–1164.
  • Meyer RP, Podvinec M, Meyer UA. (2002). Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and is activated by heme. Mol Pharmacol 62:1061–1067.
  • Michels R, Marzuk PM. (1993). Progress in psychiatry (2). N Engl J Med 329:628–638.
  • Miksys SL, Cheung C, Gonzalez FJ, Tyndale RF. (2005). Human CYP2D6 and mouse cyp2ds: Organ distribution in a humanized mouse model. Drug Metab Dispos 33:1495–1502.
  • Miksys S, Hoffman E, Tyndale RF. (2000a). Regional and cellular induction of nicotine-metabolizing CYP2B1 in rat brain by chronic nicotine treatment. Biochem Pharmacol 59:1501–1511.
  • Miksys S, Lerman C, Shields PG, et al. (2003). Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 45:122–132.
  • Miksys S, Rao Y, Hoffmann E, et al. (2002). Regional and cellular expression of CYP2D6 in human brain: Higher levels in alcoholics. J Neurochem 82:1376–1387.
  • Miksys S, Rao Y, Sellers EM, et al. (2000b). Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 30:547–564.
  • Miksys S, Tyndale RF. (2004). The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev 36:313–333.
  • Miksys S, Tyndale RF. (2013). Cytochrome P450-mediated drug metabolism in the brain. J Psychiatry Neurosci 38:152–163.
  • Miksys SL, Tyndale RF. (2002). Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27:406–415.
  • Miksys SL, Tyndale RF. (2006). Nicotine induces brain CYP enzymes: Relevance to Parkinson’s disease. J Neural Transm [Suppl] 70:177–180.
  • Miksys SL, Tyndale RF. (2009). Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology 34: 634–640.
  • Miller RT, Miksys S, Hoffmann E, Tyndale RF. (2014). Ethanol self-administration and nicotine treatment increase brain levels of CYP2D in African green monkeys. Br J Pharmacol 171:3077–3088.
  • Milthers K. (1962). N-dealkylation of morphine and nalorphine in the brain of living rats. Nature 195:607.
  • Monier S, Van Luc P, Kreibich G, et al. (1988). Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol 107:457–470.
  • Morse DC, Stein AP, Thomas PE, Lowndes HE. (1998). Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Tox Appl Pharmacol 152:232–239.
  • Murray GI, Pritchard S, Melvin WT, Burke MD. (1995). Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett 364:79–82.
  • Muskhelishvili L, Thompson PA, Kusewitt DF, et al. (2001). In situ hybridization and immunohistochemical analysis of cytochrome P450 1B1 expression in human normal tissues. J Histochem Cytochem 49:229–236.
  • Nakano M, Lockhart CM, Kelly EJ, Rettie AE. (2014). Ocular cytochrome P450s and transporters: Roles in disease and endobiotic and xenobiotic disposition. Drug Metab Rev 46:247–260.
  • Nebert DW, Dieter MZ. (2000). The evolution of drug metabolism. Pharmacology 61:124–135.
  • Nishimura M, Yaguti H, Yoshitsugu H, et al. (2003). Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi 123:369–375.
  • Niwa T, Murayama N, Imagawa Y, Yamazaki H. (2015). Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab Rev 47:89–110.
  • Niwa T, Murayama N, Yamazaki H. (2009). Oxidation of endobiotics mediated by xenobiotic-metabolizing forms of human cytochrome P450. Curr Drug Metab 10:700–712.
  • Niwa T, Okada K, Hiroi T, et al. (2008). Effect of psychotropic drugs on the 21-hydroxylation of neurosteroids, progesterone and allopregnanolone, catalyzed by rat CYP2D4 and human CYP2D6 in the brain. Biol Pharm Bull 31:348–351.
  • Niwa T, Tsutsui M, Kishimoto K, et al. (2000). Inhibition of drug-metabolizing enzyme activity in human hepatic cytochrome P450s by bisphenol A. Biol Pharm Bull 23:498–501.
  • Niwa T, Yabusaki Y, Honma K, et al. (1998). Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica 28:539–547.
  • Norman BJ, Neal RA. (1976). Examination of the metabolism in vitro of parathion (diethyl p-nitrophenyl phosphorothionate) by rat lung and brain. Biochem Pharmacol 25:37–45.
  • Obeso JA, Rodriguez-Oroz MC, Goetz CG, et al. (2010). Missing pieces in the Parkinson's disease puzzle. Nat Med 16:653–661.
  • Oda Y, Hamaoka N, Hiroi T, et al. (2001). Involvement of human liver cytochrome P450 2B6 in the metabolism of propofol. Br J Clin Pharmacol 51:281–285.
  • Olesen OV, Linnet K. (1997). Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology 55:235–243.
  • Omiecinski CJ, Bond JA, Juchau MR. (1978). Stimulation by hematin of monooxygenase activity in extra-hepatic tissues from rats, rabbits and chickens. Biochem Biophys Res Commun 83:1004–1011.
  • Omiecinski CJ, Chao ST, Juchau MR. (1980a). Modulation of monooxygenase activities by hematin and 7,8-benzoflavone in fetal tissues of rats, rabbits, and humans. Dev Pharmacol Ther 1:90–100.
  • Omiecinski CJ, Namkung MJ, Juchau MR. (1980b). Mechanistic aspects of the hematin-mediated increases in brain monooxygenase activities. Mol Pharmacol 17:255–232.
  • Omura T, Ito A. (1991). Biosynthesis and intracellular sorting of mitochondrial forms of cytochrome P450. Methods Enzymol 206:75–81.
  • Ono S, Hatanaka T, Miyazawa S, et al. (1996). Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: Role of CYP2B6, 2C19 and the 3A subfamily. Xenobiotica 26:1155–1166.
  • Pai HV, Upadhya SC, Chinta SJ, et al. (2002). Differential metabolism of alprazolam by liver and brain cytochrome (P450 3A) to pharmacologically active metabolite. Pharmacogenomics J 2:243–258.
  • Penas-Lledo EM, Dorado P, Pacheco R, et al. (2009). Relation between CYP2D6 genotype, personality, neurocognition and overall psychopathology in healthy volunteers. Pharmacogenomics 10:1111–1120.
  • Persson A, Sim SC, Virding S, et al. (2014). Decreased hippocampal volume and increased anxiety in a transgenic mouse model expressing the human CYP2C19 gene. Mol Psychiatry 19:733–741.
  • Peters FT, Meyer MR, Theobald DS, Maurer HH. (2008). Identification of cytochrome P450 enzymes involved in the metabolism of the new designer drug 4'-methyl-alpha-pyrrolidinobutyrophenone. Drug Metab Dispos 36:163–168.
  • Pratt-Hyatt M, Zhang H, Snider NT, Hollenberg PF. (2010). Effects of a commonly occurring genetic polymorphism of human CYP3A4 (I118V) on the metabolism of anandamide. Drug Metab Dispos 38:2075–2082.
  • Projean D, Morin PE, Tu TM, Ducharme J. (2003). Identification of CYP3A4 and CYP2C8 as the major cytochrome P450s responsible for morphine N-demethylation in human liver microsomes. Xenobiotica 33:841–854.
  • Prosser GA, Larrouy-Maumus G, De Carvalho LP. (2014). Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO Rep 15:657–669.
  • Quertemont E, Eriksson CJ, Zimatkin SM, et al. (2005). Is ethanol a pro-drug? Acetaldehyde contribution to brain ethanol effects. Alcohol Clin Exp Res 29:1514–1521.
  • Ravindranath V, Anandatheerthavarada HK. (1989). High activity of cytochrome P-450-linked aminopyrine N-demethylase in mouse brain microsomes, and associated sex-related difference. Biochem J 261:769–773.
  • Rieder CR, Parsons RB, Fitch NJ, et al. (2000). Human brain cytochrome P450 1B1: Immunohistochemical localization in human temporal lobe and induction by dimethylbenz(a)anthracene in astrocytoma cell line (MOG-G-CCM). Neurosci Lett 278:177–180.
  • Rieder CRM, Ramsden DB, Williams AC. (1998). Cytochrome P450 1B1 mRNA in the human central nervous system. J Clin Pathol Mol Pathol 51:138–142.
  • Rifkind AB, Lee C, Chang TKH, Waxman DJ. (1995). Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1, and 1A2: Regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes. Arch Biochem Biophys 320:380–389.
  • Rimmerman N, Bradshaw HB, Basnet A, et al. (2009). Microsomal omega-hydroxylated metabolites of N-arachidonoyl dopamine are active at recombinant human TRPv1 receptors. Prostaglandins Other Lipid Mediat 88:10–17.
  • Roberts RL, Mulder RT, Joyce PR, et al. (2004). No evidence of increased adverse drug reactions in cytochrome P450 CYP2D6 poor metabolizers treated with fluoxetine or nortriptyline. Hum Psychopharmacol 19:17–23.
  • Robin MA, Anandatheerthavarada HK, Biswas G, et al. (2002). Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J Biol Chem 277:40583–40593.
  • Robin MA, Anandatheerthavarada HK, Fang JK, et al. (2001). Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N-terminus and requires mitochondrial specific electron transfer proteins for activity. J Biol Chem 276:24680–24689.
  • Rosenbrock H, Hagemeyer CE, Ditter M, et al. (2001). Expression and localization of the CYP2B subfamily predominantly in neurones of rat brain. J Neurochem 76:332–340.
  • Rosenbrock H, Hagemeyer CE, Singec I, et al. (1999). Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms. J Neuroendocrinol 11:597–604.
  • Rudberg I, Mohebi B, Hermann M, et al. (2008). Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 83:322–327.
  • Saarikoski ST, Wikman HA, Smith G, et al. (2005). Localization of cytochrome P450 CYP2S1 expression in human tissues by in situ hybridization and immunohistochemistry. J Histochem Cytochem 53:549–556.
  • Sakaguchi M, Mihara K, Sato R. (1984). Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes. Proc Natl Acad Sci U S A 81:3361–3364.
  • Sangar MC, Anandatheerthavarada HK, Martin MV, et al. (2010). Identification of genetic variants of human cytochrome P450 2D6 with impaired mitochondrial targeting. Mol Genet Metab 99:90–97.
  • Sangar MC, Anandatheerthavarada HK, Tang W, et al. (2009). Human liver mitochondrial cytochrome P450 2D6 - individual variations and implications in drug metabolism. FEBS J 276:3440–3453.
  • Sasame HA, Ames MM, Nelson SD. (1977). Cytochrome P-450 and NADPH cytochrome c reductase in rat brain: Formation of catechols and reactive catechol metabolites. Biochem Biophys Res Commun 78:919–926.
  • Scallet AC, Muskhelishvili L, Slikker W, Jr., Kadlubar FF. (2005). Sex differences in cytochrome P450 1B1, an estrogen-metabolizing enzyme, in the rhesus monkey telencephalon. J Chem Neuroanat 29:71–80.
  • Schwarz D, Kisselev P, Ericksen SS, et al. (2004). Arachidonic and eicosapentaenoic acid metabolism by human CYP1A1: Highly stereoselective formation of 17(R),18(S)-epoxyeicosatetraenoic acid. Biochem Pharmacol 67:1445–1457.
  • Sepuri NB, Yadav S, Anandatheerthavarada HK, Avadhani NG. (2007). Mitochondrial targeting of intact CYP2B1 and CYP2E1 and N-terminal truncated CYP1A1 proteins in Saccharomyces cerevisiae - role of protein kinase A in the mitochondrial targeting of CYP2E1. FEBS J 274:4615–4630.
  • Shawahna R, Uchida Y, Decleves X, et al. (2011). Transcriptomic and quantitative proteomic analysis of transporters and drug metabolizing enzymes in freshly isolated human brain microvessels. Mol Pharm 8:1332–1341.
  • Shi Q, Chen LN, Zhang BY, et al. (2015). Proteomics analyzes for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 14:854–869.
  • Shimada T, Mimura M, Inoue K, et al. (1997). Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans. Arch Toxicol 71:401–408.
  • Shimada T, Yamazaki H, Mimura M, et al. (1994). Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423.
  • Siegle I, Fritz P, Eckhardt K, et al. (2001). Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 11:237–245.
  • Siller M, Goyal S, Yoshimoto FK, et al. (2014). Oxidation of endogenous N-arachidonoylserotonin by human cytochrome P450 2U1. J Biol Chem 289:10476–10487.
  • Sim SC, Risinger C, Dahl ML, et al. (2006). A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 79:103–113.
  • Sindrup SH, Arendt-Nielsen L, Brosen K, et al. (1992). The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol 42:587–591.
  • Sindrup SH, Brosen K, Bjerring P, et al. (1990). Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine. Clin Pharmacol Ther 48:686–693.
  • Singh NK, Banerjee BD, Bala K, et al. (2014). Gene-gene and gene-environment interaction on the risk of Parkinson's disease. Curr Aging Sci 7:101–109.
  • Smith CA, Gough AC, Leigh PN, et al. (1992). Debrisoquine hydroxylase gene polymorphism and susceptibility to Parkinson's disease. Lancet 339:1375–1377.
  • Snider NT, Nast JA, Tesmer LA, Hollenberg PF. (2009). A cytochrome P450-derived epoxygenated metabolite of anandamide is a potent cannabinoid receptor 2-selective agonist. Mol Pharmacol 75:965–972.
  • Snider NT, Sikora MJ, Sridar C, et al. (2008). The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. J Pharmacol Exp Ther 327:538–545.
  • Snider NT, Walker VJ, Hollenberg PF. (2010). Oxidation of the endogenous cannabinoid arachidonoyl ethanolamide by the cytochrome P450 monooxygenases: Physiological and pharmacological implications. Pharmacol Rev 62:136–154.
  • Spracklin DK, Hankins DC, Fisher JM, et al. (1997). Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J Pharmacol Exp Ther 281:400–411.
  • Sridar C, Snider NT, Hollenberg PF. (2011). Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. Drug Metab Dispos 39:782–788.
  • Stamou M, Wu X, Kania-Korwel I, et al. (2014). Cytochrome P450 mRNA expression in the rodent brain: Species-, sex-, and region-dependent differences. Drug Metab Dispos 42:239–244.
  • Stingl JC, Brockmoller J, Viviani R. (2013). Genetic variability of drug-metabolizing enzymes: The dual impact on psychiatric therapy and regulation of brain function. Mol Psychiatry 18:273–287.
  • Stingl JC, Esslinger C, Tost H, et al. (2012). Genetic variation in CYP2D6 impacts neural activation during cognitive tasks in humans. Neuroimage 59:2818–2823.
  • Stingl JC, Viviani R. (2011). CYP2D6 in the brain: Impact on suicidality. Clin Pharmacol Ther 89:352–353.
  • Stoffel-Wagner B. (2003). Neurosteroid biosynthesis in the human brain and its clinical implications. Ann N Y Acad Sci 1007:64–78.
  • Stoilov I, Akarsu AN, Alozie I, et al. (1998). Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P450 1B1. Am J Hum Genet 62:573–584.
  • Stoilov I, Akarsu AN, Sarfarazi M. (1997). Identification of three different truncating mutations in cytochrome P450 1B1 (CYP1B1) as the principal cause of primary congenital glaucoma (buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum Mol Genet 6:641–647.
  • Strobel HW, Thompson CM, Antonovic L. (2001). Cytochromes P450 in brain: Function and significance. Curr Drug Metab 2:199–214.
  • Sultatos LG. (1994). Mammalian toxicology of organophosphorus pesticides. J Toxicol Environ Health 43:271–289.
  • Tang J, Cao Y, Rose RL, et al. (2001). Metabolism of chlorpyrifos by human cytochrome P450 isoforms and human, mouse, and rat liver microsomes. Drug Metab Dispos 29:1201–1204.
  • Tassaneeyakul W, Birkett DJ, Mcmanus ME, et al. (1994). Caffeine metabolism by human hepatic cytochrome P450: Contributions of 1A2, 2E1 and 3A isoforms. BiochemPharmacol 47:1767–1776.
  • Tesson C, Nawara M, Salih MA, et al. (2012). Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 91:1051–1064.
  • Tindberg N, Ingelman-Sundberg M. (1996). Expression, catalytic activity and inducibility of cytochrome P450 2E1 (CYP2E1) in the rat central nervous system. J Neurochem 67:2066–2073.
  • Toselli F, Booth Depaz IM, Worrall S, et al. (2015a). Expression of CYP2E1 and CYP2U1 proteins in amygdala and prefrontal cortex: Influence of alcoholism and smoking. Alcohol Clin Exp Res 39:790–797.
  • Toselli F, De Waziers I, Dutheil M, et al. (2015b). Gene expression profiling of cytochromes P450, ABC transporters and their principal transcription factors in the amygdala and prefrontal cortex of alcoholics, smokers and drug-free controls by qRT-PCR. Xenobiotica 45:1129–1137.
  • Totah RA, Allen KE, Sheffels P, et al. (2007). Enantiomeric metabolic interactions and stereoselective human methadone metabolism. J Pharmacol Exp Ther 321:389–399.
  • Tovar-Y-Romo LB, Bumpus NN, Pomerantz D, et al. (2012). Dendritic spine injury induced by the 8-hydroxy metabolite of efavirenz. J Pharmacol Exp Ther 343:696–703.
  • Tsuchiya Y, Nakajima M, Yokoi T. (2005). Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124.
  • Tsutsui K, Ukena K, Takase M, et al. (1999). Neurosteroid biosynthesis in vertebrate brains. Comp Biochem Physiol C 124:121–129.
  • Tyndale RF, Li Y, Li NY, et al. (1999). Characterization of cytochrome P-450 2D1 activity in rat brain: High-affinity kinetics for dextromethorphan. Drug Metab Dispos 27:924–930.
  • Upadhya SC, Tirumalai PS, Boyd MR, et al. (2000). Cytochrome P450 2E (CYP2E) in brain: Constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch Biochem Biophys 373:23–34.
  • Voirol P, Jonzier-Perey M, Porchet F, et al. (2000). Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 855:235–243.
  • Walther B, Ghersi-Egea JF, Minn A, Siest G. (1986). Subcellular distribution of cytochrome P-450 in the brain. Brain Res 375:338–344.
  • Waluk DP, Battistini MR, Dempsey DR, et al. (2014). Mammalian fatty acid amides of the brain and CNS. In: Watson RR, De Meester F, eds. Omega-3 fatty acids in brain and neurological health. London: Academic Press Ltd-Elsevier Science Ltd.
  • Ward BA, Gorski JC, Jones DR, et al. (2003). The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: Implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300.
  • Warner M, Kohler C, Hansson T, Gustafsson JA. (1988). Regional distribution of cytochrome P-450 in the rat brain: Spectral quantitation and contribution of P-450b,e, and P-450c,d. J Neurochem 50:1057–1065.
  • Waxman DJ, Attisano C, Guengerich FP, Lapenson DP. (1988). Human liver microsomal steroid metabolism: Identification of the major microsomal steroid hormone 6 beta-hydroxylase cytochrome P-450 enzyme. Arch Biochem Biophys 263:424–436.
  • Wei Y, Li L, Zhou X, et al. (2013). Generation and characterization of a novel Cyp2a(4/5)bgs-null mouse model. Drug Metab Dispos 41:132–140.
  • Weitz CJ, Faull KF, Goldstein A. (1987). Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330:674–677.
  • Weitz CJ, Lowney LI, Faull KF, et al. (1986). Morphine and codeine from mammalian brain. Proc Natl Acad Sci U S A 83:9784–9788.
  • Werck-Reichhart D, Feyereisen R. (2000). Cytochromes P450: A success story. Genome Biol 1:3003.1–3009.
  • Wienkers LC, Heath TG. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833.
  • Wu L, Gu J, Cui H, et al. (2005). Transgenic mice with a hypomorphic NADPH-cytochrome P450 reductase gene: Effects on development, reproduction, and microsomal cytochrome P450. J Pharmacol Exp Ther 312:35–43.
  • Wu L, Gu J, Weng Y, et al. (2003). Conditional knockout of the mouse NADPH-cytochrome P450 reductase gene. Genesis 36:177–181.
  • Wu S, Moomaw CR, Tomer KB, et al. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 271:3460–3468.
  • Wu D, Otton SV, Inaba T, et al. (1997). Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 53:1605–1612.
  • Wu ZL, Sohl CD, Shimada T, Guengerich FP. (2006). Recombinant enzymes overexpressed in bacteria show broad catalytic specificity of human cytochrome P450 2W1 and limited activity of human cytochrome P450 2S1. Mol Pharmacol 69:2007–2014.
  • Xiao Y, Guengerich FP. (2012). Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. J Lipid Res 53:1610–1617.
  • Yadav S, Dhawan A, Singh RL, et al. (2006). Expression of constitutive and inducible cytochrome P450 2E1 in rat brain. Mol Cell Biochem 286:171–180.
  • Yamazaki H, Inoue K, Hashimoto M, Shimada T. (1999). Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol 73:65–70.
  • Yamazaki H, Inoue K, Mimura M, et al. (1996). 7-ethoxycoumarin O-deethylation catalyzed by cytochromes P450 1A2 and 2E1 in human liver microsomes. Biochem Pharmacol 51:313–319.
  • Yamazaki H, Shimada T. (1997). Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys 346:161–169.
  • Yan H, Kong Y, He B, et al. (2015). CYP2J2 rs890293 polymorphism is associated with susceptibility to Alzheimer's disease in the Chinese Han population. Neurosci Lett 593:56–60.
  • Yasui-Furukori N, Kaneda A, Iwashima K, et al. (2007). Association between cytochrome P450 (CYP) 2C19 polymorphisms and harm avoidance in Japanese. Am J Med Genet B Neuropsychiatr Genet 144B:724–727.
  • Yoshioka H, Kasai N, Ikushiro S, et al. (2006). Enzymatic properties of human CYP2W1 expressed in Escherichia coli. Biochem Biophys Res Commun 345:169–174.
  • Yu AM, Idle JR, Byrd LG, et al. (2003a). Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 13:173–181.
  • Yu AM, Idle JR, Herraiz T, et al. (2003b). Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 13:307–319.
  • Yu AM, Idle JR, Krausz KW, et al. (2003c). Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine. J Pharmacol Exp Ther 305:315–322.
  • Yue J, Miksys S, Hoffmann E, Tyndale RF. (2008). Chronic nicotine treatment induces rat CYP2D in the brain but not in the liver: An investigation of induction and time course. J Psychiatry Neurosci 33:54–63.
  • Yue QY, Svensson JO, Alm C, et al. (1989). Codeine O-demethylation co-segregates with polymorphic debrisoquine hydroxylation. Br J Clin Pharmacol 28:639–645.
  • Yun CH, Park HJ, Kim SJ, Kim HK. (1998). Identification of cytochrome P450 1A1 in human brain. Biochem Biophys Res Commun 243:808–810.
  • Zackrisson AL, Lindblom B, Ahlner J. (2010). High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating ultrarapid metabolism among suicide cases. Clin Pharmacol Ther 88:354–359.
  • Zanger UM, Turpeinen M, Klein K, Schwab M. (2008). Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem 392:1093–1108.
  • Zhou K, Khokhar JY, Zhao B, Tyndale RF. (2013). First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo. Biochem Pharmacol 85:1848–1855.
  • Zimatkin SM, Pronko SP, Vasiliou V, et al. (2006). Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res 30:1500–1505.
  • Zwain IH, Yen SSC. (1999a). Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140:3843–3852.
  • Zwain IH, Yen SS. (1999b). Dehydroepiandrosterone: biosynthesis and metabolism in the brain. Endocrinology 140:880–887.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.