1,012
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Non-cytochrome P450-mediated bioactivation and its toxicological relevance

, &
Pages 473-501 | Received 01 May 2016, Accepted 12 Aug 2016, Published online: 20 Sep 2016

References

  • Adams JD, Sayer JM, Chadha A, et al. (1999). The proximate carcinogen trans-3,4-dihydroxy-3,4-dihydro-dibenz[c,h]acridine is oxidized stereoselectively and regioselectively by cytochrome 1A1, epoxide hydrolase and hepatic microsomes from 3-methylcholanthrene-treated rats. Chem Biol Interact 122:117–135.
  • Amin S, Desai D, Hecht SS. (1993). Tumor-initiating activity on mouse skin of bay region diol-epoxides of 5,6-dimethylchrysene and benzo[c]phenanthrene. Carcinogenesis 14:2033–2037.
  • Amin S, Misra B, Braley J, Hecht SS. (1991). Comparative tumorigenicity in newborn mice of chrysene- and 5-alkylchrysene-1,2-diol-3,4-epoxides. Cancer Lett 58:115–118.
  • Baer BR, DeLisle RK, Allen A. (2009). Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition. Chem Res Toxicol 22:1298–1309.
  • Bailey MJ, Dickinson RG. (2003). Acyl glucuronide reactivity in perspective: Biological consequences. Chem Biol Interact 145:117–137.
  • Baillie TA. (2008). Metabolism and toxicity of drugs. Two decades of progress in industrial drug metabolism. Chem Res Toxicol 21:129–137.
  • Baillie TA, Slatter JG. (1991). Glutathione: A vehicle for the transport of chemically reactive metabolites in vivo. Acc Chem Res 24:264–270.
  • Barr JT, Choughule K, Jones JP. (2014). Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 1113:167–186.
  • Bell CC, Santoyo Castelazo A, Yang EL, et al. (2013). Oxidative bioactivation of abacavir in subcellular fractions of human antigen presenting cells. Chem Res Toxicol 26:1064–1072.
  • Barski OA, Tipparaju SM, Bhatnagar A. (2008). The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40:553–624.
  • Begleiter AK, Leith M. (1995). Induction of DT-diaphorase by doxorubicin and combination therapy with mitomycin C in vitro. Biochem Pharmacol 50:1281–1286.
  • Belinsky M, Jaiswal AK. (1993). NAD(P)H: Quinone oxidoreductase1 (DT-diaphorase) expression in normal and tumor tissues. Cancer Metastasis Rev 12:103–117.
  • Boatman RJ, English JC, Perry LG, Fiorica LA. (2000). Covalent protein adducts of hydroquinone in tissues from rats: Quantitation of sulfhydryl-bound forms following single gavage or intraperitoneal administration or repetitive gavage administration. Chem Res Toxicol 13:861–872.
  • Boelsterli UA. (2002). Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Cur Drug Metabolism 3:439–450.
  • Boelsterli UA, Redinbo MR, Saitta KS. (2013). Multiple NSAID-induced hits injure the small intestine: Underlying mechanisms and novel strategies. Toxicol Sci 131:654–667.
  • Bouman HJ, Schömig E, van Werkum JW, et al. (2011). Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med 17:110–116.
  • Boyd JA, Eling TE. (1981). Prostaglandin endoperoxide synthetase-dependent cooxidation of acetaminophen to intermediates which covalently bind in vitro to rabbit renal medullary microsomes. J Pharmacol Exp Ther 219:659–664.
  • Boyda HN, Procyshyn RM, Pang CCY, et al. (2013). Metabolic side-effects of the novel second-generation antipsychotic drugs asenapine and iloperidone: A comparison with olanzapine. PLoS One 8:1–11.
  • Brunmark A, Cadenas E, Lind C, et al. (1987). DT-diaphorase-catalyzed two electron reduction of quinone epoxides. Free Radic Biol Med 3:181–188.
  • Bylund J, Macsari I, Besidski Y, et al. (2012). Novel bioactivation mechanism of reactive metabolite formation from phenyl methyl-isoxazoles. Drug Metab Dispos 40:2185–2191.
  • Cai TT, Yao L, Turesky RJ. (2016). Bioactivation of heterocyclic aromatic amines by UDP glucuronosyltransferases. Chem Res Toxicol 29:879–891.
  • Carter PJ, Senter PD. (2013). Antibody-drug conjugates for cancer therapy. Cancer J 14:154–169.
  • Cashman JR, Hanzlik RP. (1981). Microsomal oxidation of thiobenzamide. A photometric assay for the flavin-containing monooxygenase. Biochem Biophys Res Commun 98:147–153.
  • Cashman JR, Proudfoot J, Pate DW, Hogberg T. (1988). Stereoselective N-oxygenation of zimeldine and homozimeldine by the flavin-containing monooxygenase. Drug Metab Dispos 16:616–622.
  • Cashman JR, Xiong YN, Xu L, Janowsky A. (1999). N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): Role in bioactivation and detoxication. J Pharmacol Exp Ther 288:1251–1260.
  • Cashman JR, Yang ZC, Hogberg T. (1990). Oxidation of N-hydroxynorzimeldine to a stable nitrone by hepatic monooxygenases. Chem Res Toxicol 3:428–432.
  • Cerny MA. (2016). Prevalence of non-cytochrome P450-mediated metabolism in FDA approved oral and intravenous drugs: 2006–2015. Drug Metab Dispos 44:1246–1252.
  • Chari RVJ, Miller ML, Widdison WC. (2014). Antibody-drug conjugates: An emerging concept in cancer therapy. Angew Chem Int Ed Engl 53:3796–3827.
  • Charlton B, Redberg R. (2014). The trouble with dabigatran. BMJ 349:g4681–g4681.
  • Charneira C, Godinho AL, Oliveira MC, et al. (2011). Reactive aldehyde metabolites from the anti-HIV drug abacavir: Amino acid adducts as possible factors in abacavir toxicity. Chem Res Toxicol 24:2129–2141.
  • Chen G, Yin S, Maiti S, Shao X. (2002). 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol Toxicol 16:279–285.
  • Chen J, Mannargudi BM, Xu L, Uetrecht J. (2008). Demonstration of the metabolic pathway responsible for nevirapine-induced skin rash. Chem Res Toxicol 21:1862–1870.
  • Chiba K, Trevor A, Castagnoli N Jr. (1984). Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578.
  • Clement B, Lopian K. (2003). Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Metab Dispos 31:645–651.
  • Collins MA, Neafsey EJ, Matsubara K, et al. (1992). Indole-N-methylation of beta-carbolines: The brain's bioactivation route to toxins in Parkinson's disease? Ann NY Acad Sci 648:263–265.
  • Corley RA, English JC, Hill TS, et al. (2000). Development of a physiologically based pharmacokinetic model for hydroquinone. Toxicol Appl Pharmacol 165:163–174.
  • Cooper AJL. (1998). Mechanisms of cysteine S-conjugate beta-lyases. Adv Enzymol 72:199–215.
  • Curthoys NP, Hughey RP. (1979). Characterization and physiological function of rat renal gamma-glutamyltranspeptidase. Enzyme 24:383–403.
  • Dahlin DC, Miwa GT, Lu AY, Nelson SD. (1984). N-acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen. Proc Nat Acad Sci USA 81:1327–1331.
  • Dansette PM, Levent D, Hessani A, Mansuy D. (2015). Bioactivation of clopidogrel and prasugrel: Factors determining the stereochemistry of the thiol metabolite double bond. Chem Res Toxicol 28:1338–1345.
  • Darnell M, Breitholtz K, Isin EM, et al. (2015). Significantly different covalent binding of oxidative metabolites, acyl glucuronides, and S-acyl CoA conjugates formed from xenobiotic carboxylic acids in human liver microsomes. Chem Res Toxicol 28:886–896.
  • Darnell M, Weidolf L. (2013). Metabolism of xenobiotic carboxylic acids: Focus on coenzyme A conjugation, reactivity, and interference with lipid metabolism. Chem Res Toxicol 26:1139–1155.
  • Davies AM, Martin EA, Jones RM, et al. (1995). Peroxidase activation of tamoxifen and toremifene resulting in DNA damage and covalently bound protein adducts. Carcinogenesis 16:539–545.
  • Desmet VJ, Krstulovic B, Van Damme B. (1968). Histochemical study of rat liver in alpha-naphthyl isothiocyanate (ANIT) induced cholestasis. Am J Pathol 52:401–421.
  • Diamond S, Boer J, Maduskuie TP, Jr., et al. (2010). Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38:1277–1285.
  • Dekant W. (2001). Chemical-induced nephrotoxicity mediated by glutathione S-conjugate formation. Toxicol Lett 124:21–36.
  • Dieckhaus CM, Santos WL, Sofia RD, Macdonald TL. (2001). The chemistry, toxicology, and identification in rat and human urine of 4-hydroxy-5-phenyl-1,3-oxazaperhydroin-2-one: A reactive metabolite in felbamate bioactivation. Chem Res Toxicol 14:958–964.
  • Dieckhaus CM, Thompson CD, Roller SG, Macdonald TL. (2002). Mechanisms of idiosyncratic drug reactions: The case of felbamate. Chem Biol Interact 142:99–117.
  • Dietrich CG, Ottenhoff R, de Waart DR, Oude Elferink RP. (2001). Role of MRP2 and GSH in intrahepatic cycling of toxins. Toxicology 167:73–81.
  • Ding A, Ojingwa JC, McDonagh AF, et al. (1993). Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci USA 90:3797–3801.
  • Doronina SO, Toki BE, Torgov MY, et al. (2003). Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784.
  • Duncan R, Kopecek J, Rejmanova P, et al. (1983). Targeting of N-(2-hydroxypropyl)methacrylamide copolymers to liver by incorporation of galactose residues. Biochim Biophys Acta 755:518–521.
  • Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. (2004). Drug-protein adducts: An industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16.
  • Dowers TS, Qin ZH, Thatcher GR, Bolton JL. (2006). Bioactivation of selective estrogen receptor modulators (SERMs). Chem Res Toxicol 19:1125–1137.
  • Falany CN, Wheeler J, Coward L, et al. (1992). Bioactivation of 7-hydroxymethyl-12-methylbenz[a]anthracene by rat liver bile acid sulfotransferase I. J Biochem Toxicol 7:241–248.
  • Fan PW, Bolton JL. (2001). Bioactivation of tamoxifen to metabolite E quinone methide: Reaction with glutathione and DNA. Drug Metab Dispos 29:891–896.
  • Fields JZ, Albores R, Neafsey EJ, Collins MA. (1992). Similar inhibition of mitochondrial respiration by 1-methyl-4-phenyl-pyridinium (MPP+) and by a unique N-methylated beta-carboline analog, 2,9-dimethyl-norharman (2,9Me2NH). Ann NY Acad Sci 648:272–274.
  • Fourie J, Guziec F, Guziec L, et al. (2004). Structure-activity study with bioreductive benzoquinone alkylating agents: Effects on DT-diaphorase-mediated DNA crosslink and strand break formation in relation to mechanisms of cytotoxicity. Cancer Chemother Pharmacol 53:191–203.
  • Fröhlich K, Girreser U, Clement B. (2005). Metabolism of benzamidoxime (N-hydroxyamidine) in human hepatocytes and role of UDP-glucuronosyltransferases. Xenobiotica 35:17–25.
  • Funk C, Pantze M, Jehle L, et al. (2001a). Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology 167:83–98.
  • Funk C, Ponelle C, Scheuermann G, Pantze M. (2001b). Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: In vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 59:627–635.
  • Gamboa da Costa G, Pereira PC, Churchwell MI, et al. (2007). DNA adduct formation in the livers of female Sprague–Dawley rats treated with toremifene or alpha-hydroxytoremifene. Chem Res Toxicol 20:300–310.
  • Gan J, Qu Q, He B, et al. (2008). Troglitazone thiol adduct formation in human liver microsomes: Enzyme kinetics and reaction phenotyping. Drug Metab Lett 2:184–189.
  • Garattini E, Terao M. (2013). Aldehyde oxidase and its importance in novel drug discovery: Present and future challenges. Expert Opin Drug Discov 8:641–654.
  • Gearhart DA, Collins MA, Lee JM, Neafsey EJ. (2000). Increased beta-carboline 9N-methyltransferase activity in the frontal cortex in Parkinson's disease. Neurobiol Dis 7:201–211.
  • Gearhart DA, Neafsey EJ, Collins MA. (1997). Characterization of brain beta-carboline-2-N-methyltransferase, an enzyme that may play a role in idiopathic Parkinson's disease. Neurochem Res 22:113–121.
  • Ghaoui R, Sallustio BC, Burcham PC, Fontaine FR. (2003). UDP-glucuronosyltransferase-dependent bioactivation of clofibric acid to a DNA-damaging intermediate in mouse hepatocytes. Chem Biol Interact 145:201–211.
  • Glatt H. (1997). Sulfation and sulfotransferases 4: Bioactivation of mutagens via sulfation. FASEB J 11:314–321.
  • Glatt H. (2000). Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 129:141–170.
  • Glatt H, Engelke CE, Pabel U, et al. (2000). Sulfotransferases: Genetics and role in toxicology. Toxicol Lett 112–113:341–348.
  • Grillo MP. (2011). Drug-S-acyl-glutathione thioesters: Synthesis, bioanalytical properties, chemical reactivity, biological formation and degradation. Curr Drug Metab 12:229–244.
  • Grillo MP, Chiellini G, Tonelli M, Benet LZ. (2001). Effect of alpha-fluorination of valproic acid on valproyl-S-acyl-CoA formation in vivo in rats. Drug Metab Dispos 29:1210–1215.
  • Grilo NM, Antunes AM, Caixas U, et al. (2013). Monitoring abacavir bioactivation in humans: Screening for an aldehyde metabolite. Toxicol Lett 219:59–64.
  • Grilo NM, Charneira C, Pereira SA, et al. (2014). Bioactivation to an aldehyde metabolite–possible role in the onset of toxicity induced by the anti-HIV drug abacavir. Toxicol Lett 224:416–423.
  • Grollman AP. (2013). Aristolochic acid nephropathy: Harbinger of a global iatrogenic disease. Environ Mol Mutagen 54:1–7.
  • Guengerich F. (2005). Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8:E101–E111.
  • Gutierrez PL. (2000). The role of NAD(P)H oxidoreductase (DT-Diaphorase) in the bioactivation of quinone-containing antitumor agents: A review. Free Radic Biol Med 29:263–275.
  • He K, Talaat RE, Pool WF, et al. (2004). Metabolic activation of troglitazone: Identification of a reactive metabolite and mechanisms involved. Drug Metab Dispos 32:639–646.
  • Hahn R, Wendel A, Flohé L. (1978). The fate of extracellular glutathione in the rat. Biochim Biophys Acta 539:324–337.
  • Hanigan MH, Gallagher BC, Taylor PT, Large MK. (1994). Inhibition of gama-glutamyl transpeptidase activity by acivicin in vivo protects the kidney from cisplatin-induced toxicity. Cancer Res 54:5925–5929.
  • Hanigan MH, Lykissa ED, Townsend DM, et al. (2001). Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol 159:1889–1894.
  • Havemeyer A, Bittner F, Wollers S, et al. (2006). Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem 281:34796–34802.
  • Hein DW. (2006). N-acetyltransferase 2 genetic polymorphism: Effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658.
  • Henderson MC, Krueger SK, Stevens JF, Williams DE. (2004). Human flavin-containing monooxygenase form 2 S-oxygenation: Sulfenic acid formation from thioureas and oxidation of glutathione. Chem Res Toxicol 17:633–640.
  • Hinton LK, Galetin A, Houston JB. (2008). Multiple inhibition mechanisms and prediction of drug-drug interactions: Status of metabolism and transporter models as exemplified by gemfibrozil-drug interactions. Pharm Res 25:1063–1074.
  • Horng H, Benet LZ. (2013). Characterization of the acyl-adenylate linked metabolite of mefenamic Acid. Chem Res Toxicol 26:465–476.
  • Howell BA, Siler SQ, Watkins PB. (2014). Use of a systems model of drug-induced liver injury (DILIsym((R))) to elucidate the mechanistic differences between acetaminophen and its less-toxic isomer, AMAP, in mice. Toxicol Lett 226:163–172.
  • Ikehata K, Duzhak TG, Galeva NA, et al. (2008). Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo. Chem Res Toxicol 21:1432–1442.
  • Hutzler JM, Obach RS, Dalvie D, Zientek MA. (2013). Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol 9:168.
  • Ioannides C, Lewis DFV. (2004). Cytochromes P450 in the bioactivation of chemicals. Curr Top Med Chem 4:1767–1788.
  • Ji T, Ikehata K, Koen YM, et al. (2007). Covalent modification of microsomal lipids by thiobenzamide metabolites in vivo. Chem Res Toxicol 20:701–708.
  • Jinsmaa Y, Florang VR, Rees JN, et al. (2011). Dopamine-derived biological reactive intermediates and protein modifications: Implications for Parkinson's disease. Chem-Biol Interact 192:118–121.
  • Ju C, Uetrecht JP. (1999). Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. J Pharmacol Exp Ther 288:51–56.
  • Kadlubar FF, Miller JA, Miller EC. (1977). Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res 37:805–814.
  • Kadlubar FF, Unruh LE, Flammang TJ, et al. (1981). Alteration of urinary levels of the carcinogen, N-hydroxy-2-naphthylamine, and its N-glucuronide in the rat by control of urinary pH, inhibition of metabolic sulfation, and changes in biliary excretion. Chem Biol Interact 33:129–147.
  • Kassahun K, Pearson PG, Tang W, et al. (2001). Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 14:62–70.
  • Kazmi F, Barbara JE, Yerino P, Parkinson A. (2015). A long-standing mystery solved: The formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement. Drug Metab Dispos 43:523–533.
  • Keisu M, Andersson TB. (2010). Drug-induced liver injury in humans: The case of ximelagatran. Handb Exp Pharmacol 196: 407–418.
  • Kalgutkar AS, Dalvie D. (2015). Predicting toxicities of reactive metabolite–positive drug candidates. Annu Rev Pharmacol Toxicol 55:35–54.
  • Kalgutkar AS, Gardner I, Obach RS, et al. (2005). A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6:161–225.
  • Kapetanovic IM, Torchin CD, Thompson CD, et al. (1998). Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 26:1089–1095.
  • Kawashima K, Hosoi K, Naruke T, et al. (1999). Aldehyde oxidase-dependent marked species difference in hepatic metabolism of the sedative-hypnotic, zeleplon, between monkeys and rats. Drug Metab Dispos 27:422–428.
  • Khan AA, Rahmani AH, Aldebasi YH, Aly SM. (2014). Biochemical and pathological studies on peroxidases -an updated review. Global J Health Sci 6:87–98.
  • King CM, Land SJ, Jones RF, et al. (1997). Role of acetyltransferases in the metabolism and carcinogenicity of aromatic amines. Mutat Res 376:123–128.
  • King CM. (1995). Tamoxifen and the induction of cancer. Carcinogenesis 16:1449–1454.
  • King RS, Teitel CH, Kadlubar FF. (2000). In vitro bioactivation of N-hydroxy-2-amino-alpha-carboline. Carcinogenesis 21:1347–1354.
  • Knights KM, Sykes MJ, Miners JO. (2007). Amino acid conjugation: Contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opin Drug Metab Toxicol 3:159–168.
  • Kochansky CJ, Xia YQ, Wang S, et al. (2005). Species differences in the elimination of a peroxisome proliferator-activated receptor agonist highlighted by oxidative metabolism of its acyl glucuronide. Drug Metab Dispos 33:1894–1904.
  • Krueger SK, Williams DE. (2005). Mammalian flavin-containing monooxygenases: Structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387.
  • Kubow S, Wells PG. (1989). In vitro bioactivation of phenytoin to a reactive free radical intermediate by prostaglandin synthetase, horseradish peroxidase, and thyroid peroxidase. Mol Pharmacol 35:504–511.
  • Koukouritaki SB, Simpson P, Yeung CK, et al. (2002). Human hepatic flavin-containing monooxygease I (FMO1) and 3 (FMO3) developmental expression. Pediatric Res 51:236–242.
  • Kumagai Y, Tsurutani Y, Shinyashiki M, et al. (1997). Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase. Environ Toxicol Pharmacol 3:245–250.
  • Kumar S, Chang RL, Wood AW, et al. (2001). Tumorigenicity of racemic and optically pure bay region diol epoxides and other derivatives of the nitrogen heterocycle dibenz[a,h]acridine on mouse skin. Carcinogenesis 22:951–955.
  • Kumar S, Sikka HC, Dubey SK, et al. (1989). Mutagenicity and tumorigenicity of dihydrodiols, diol epoxides, and other derivatives of benzo(f)quinoline and benzo(h)quinoline. Cancer Res 49:20–24.
  • Kumar S, Samuel K, Subramanian R, et al. (2002). Extrapolation of diclofenac clearance from in vitro microsomal metabolism data: Role of acyl glucuronidation and sequential oxidative metabolism of the acyl glucuronide. J Pharmacol Exp Ther 303:969–978.
  • Lange RW, Day BW, Lemus R, et al. (1999). Intracellular S-glutathionyl adducts in murine lung and human bronchoepithelial cells after exposure to diisocyanatotoluene. Chem Res Toxicol 12:931–936.
  • Lassila T, Hokkanen J, Aatsinki SM, et al. (2015). Toxicity of carboxylic acid-containing drugs: The role of acyl migration and CoA conjugation investigated. Chem Res Toxicol 28:2292–2303.
  • Leppik IE. (2004). Zonisamide: Chemistry, mechanism of action, and pharmacokinetics. Seizure 1:S5–S9.
  • Lewis JP, Fisch AS, Ryan K, et al. (2011). Paraoxonase 1 (PON1) gene variants are not associated with clopidogrel response. Clin Pharmacol Ther 90:568–574.
  • Li C, Grillo MP, Benet LZ. (2003). In vitro studies on the chemical reactivity of 2,4-dichlorophenoxyacetyl-S-acyl-CoA thioester. Toxicol Appl Pharmacol 187:101–109.
  • Li H, Cui H, Kundu TK, et al. (2008). Nitric oxide production from nitrite occurs primarily in tissues not in the blood: Critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283:17855–17863.
  • Li Y, Xu J, Lai WG, et al. (2012). Metabolic switching of BILR 355 in the presence of ritonavir. II. Uncovering novel contributions by gut bacteria and aldehyde oxidase. Drug Etabol Dispos 40:1130–1137.
  • Liu L, Wells PG. (1995). Potential molecular targets mediating chemical teratogenesis: In vitro peroxidase-catalyzed phenytoin metabolism and oxidative damage to proteins and lipids in murine maternal hepatic microsomes and embryonic 9000g supernatant. Toxicol Appl Pharmacol 134:71–80.
  • Liu ZC, Uetrecht JP. (1995). Clozapine is oxidized by activated human neutrophils to a reactive nitrenium ion that irreversibly binds to the cells. J Pharmacol Exp Ther 275:1476–1483.
  • Lohr JW, Willsky GR, Acara MA. (1998). Renal drug metabolism. Pharmacol Rev 50:107–141.
  • Lobach AR, Uetrecht J. (2014). Involvement of myeloperoxidase and NADPH oxidase in the covalent binding of amodiaquine and clozapine to neutrophils: Implications for drug-induced agranulocytosis. Chem Res Toxicol 27:699–709.
  • LoGuidice A, Wallace BD, Bendel L, et al. (2012). Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 341:447–454.
  • Longo DM, Yang Y, Watkins PB, et al. (2016). Elucidating differences in the hepatotoxic potential of tolcapone and entacapone with DILIsym((R)), a mechanistic model of drug-induced liver injury. CPT 5:31–39.
  • Lu W, Uetrecht JP. (2008). Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos 36:1624–1636.
  • Madden S, Maggs JL, Park BK. (1996). Bioactivation of carbamazepine in the rat in vivo. Evidence for the formation of reactive arene oxide(s). Drug Metab Dispos 24:469–479.
  • Maggs JL, Williams D, Pirmohamed M, Park BK. (1995). The metabolic formation of reactive intermediates from clozapine, a drug associated with agranulocytosis in man. J Pharmacol Exp Ther 275:1463–1475.
  • Marques MM, Beland FA. (1997). Identification of tamoxifen-DNA adducts formed by 4-hydroxytamoxifen quinone methide. Carcinogenesis 18:1949–1954.
  • Matsubara K, Collins MA, Akane A, et al. (1993). Potential bioactivated neurotoxicants, N-methylated beta-carbolinium ions, are present in human brain. Brain Res 610:90–96.
  • Metushi I, Uetrecht J, Phillips E. (2016). Mechanism of isoniazid-induced hepatotoxicity: Then and now. Br J Clin Pharmacol 81:1030–1036.
  • Metushi IG, Nakagawa T, Uetrecht J. (2012). Direct oxidation and covalent binding of isoniazid to rodent liver and human hepatic microsomes: Humans are more like mice than rats. Chem Res Toxicol 25:2567–2576.
  • Meyer DJ, Crease DJ, Ketterer B. (1995). Forward and reverse catalysis and product sequestration by human glutathione S-transferases in the reaction of GSH with dietary aralkyl isothiocyanates. Biochem J 306:565–569.
  • Mitchell JR, Zimmerman HJ, Ishak KG, et al. (1976). Isoniazid liver injury: Clinical spectrum, pathology, and probable pathogenesis. Ann Int Med 84:181–192.
  • Miho K, Yuji O, Katsunobu H, et al. (2015). Human intestinal Raf kinase inhibitor protein, RKIP, catalyzes prasugrel as a bioactivation hydrolase. Drug Metab Dispos 44:115–123.
  • Moghaddam MF, Grant DF, Cheek JM, et al. (1997). Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med 3:562–566.
  • Mohamed MM, Sloane BF. (2006). Cysteine cathepsins: Multifunctional enzymes in cancer. Nat Rev Cancer 6:764–775.
  • Moldeus P, Andersson B, Rahimtula A, Berggren M. (1982). Prostaglandin synthetase catalyzed activation of paracetamol. Biochem Pharmacol 31:1363–1368.
  • Morisseau C, Hammock BD. (2012). Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58.
  • Mutlib AE, Gerson RJ, Meunier PC, et al. (2000). The species-dependent metabolism of efavirenz produces a nephrotoxic glutathione conjugate in rats. Toxicol Appl Pharmacol 169:102–113.
  • Nelson E. (1965). Studies on the crystalluria potential of sulfamethoxydiazine. Chemotherapy 10:145–151.
  • Nelson SD, Dahlin DC, Rauckman EJ, Rosen GM. (1981). Peroxidase-mediated formation of reactive metabolites of acetaminophen. Mol Pharmacol 20:195–199.
  • Niemi M, Backman JT, Neuvonen M, Neuvonen PJ. (2003). Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: Potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 46:347–351.
  • Nivinskas H, Staškevičiene S, Šarlauskas J, et al. (2002). Two-electron reduction of quinones by Enterobacter cloacae NAD(P)H:nitroreductase: Quantitative structure-activity relationships. Arch Biochem Biophys 403:249–258.
  • Novotna R, Wsol V, Xiong G, Maser E. (2008). Inactivation of the anticancer drugs doxorubicin and oracin by aldo-keto: Reductase (AKR) 1C3. Toxicol Lett 181:1–6.
  • O’Brien PJ. (1991). Molecular mechanisms of quinone cytotoxicity. Chen-Biol Interaction 80:1–41.
  • Oliveira RAS, Azevedo-Ximenes E, Luzzati R, Garcia RC. (2010). The hydroxy-naphthoquinone lapachol arrests mycobacterial growth and immunomodulates host macrophages. Int Immunopharmacol 10:1463–1473.
  • Ogilvie BW, Zhang D, Li W, et al. (2006). Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: Implications for drug-drug interactions. Drug Metab Dispos 34:191–197.
  • Okuda T, Norioka M, Shitara Y, Horie T. (2010). Multiple mechanisms underlying troglitazone-induced mitochondrial permeability transition. Toxicol Appl Pharmacol 248:242–248.
  • Olsen J, Li C, Bjornsdottir I, et al. (2005). In vitro and in vivo studies on acyl-coenzyme A-dependent bioactivation of zomepirac in rats. Chem Res Toxicol 18:1729–1736.
  • Olsen J, Li C, Skonberg C, et al. (2007). Studies on the metabolism of tolmetin to the chemically reactive acyl-coenzyme A thioester intermediate in rats. Drug Metab Dispos 35:758–764.
  • Orsler DJ, Ahmed-Choudhury J, Chipman JK, et al. (1999). ANIT-induced disruption of biliary function in rat hepatocyte couplets. Toxicol Sci 47:203–210.
  • Pare G, Eriksson N, Lehr T, et al. (2013). Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation 127:1404–1412.
  • Park BK, Laverty H, Srivastava A, et al. (2011). Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact 192:30–36.
  • Pathak DN, Pongracz K, Bodell WJ. (1996). Activation of 4-hydroxytamoxifen and the tamoxifen derivative metabolite E by uterine peroxidase to form DNA adducts: Comparison with DNA adducts formed in the uterus of Sprague–Dawley rats treated with tamoxifen. Carcinogenesis 17:1785–1790.
  • Pellock JM. (1999). Felbamate in epilepsy therapy. Evaluating the risks. Drug Safety 21:225–239.
  • Pennell PB, Ogaily MS, Macdonald RL. (1995). Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology 45:456–460.
  • Pirmohamed M, Madden S, Park BK. (1996). Idiosyncratic drug reactions. Metabolic bioactivation as a pathogenic mechanism. Clin Pharmacokinet 31:215–230.
  • Potter DW, Miller DW, Hinson JA. (1986). Horseradish peroxidase-catalyzed oxidation of acetaminophen to intermediates that form polymers or conjugate with glutathione. Mol Pharmacol 29:155–162.
  • Preusch PC, Suttie JW. (1984). Lapachol inhibition of vitamin K epoxide reductase and vitamin K quinone reductase. Arch Biochem Biophys 234:405–412.
  • Parman T, Chen G, Wells PG. (1998). Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis. J Biol Chem 273:25079–25088.
  • Pryde DC, Dalvie D, Hu Q, et al. (2010). Aldehyde oxidase: An enzyme of emerging importance in drug discovery. J Med Chem 53:8441–8460.
  • Rees JN, Florang VR, Eckert LL, Doorn JA. (2009). Protein reactivity of 3,4-dihydroxyphenylacetaldehyde, a toxic dopamine metabolite, is dependent on both the aldehyde and the catechol. Chem Res Toxicol 22:1256–1263.
  • Regan SL, Maggs JL, Hammond TG, et al. (2010). Acyl glucuronides: The good, the bad and the ugly. Biopharm Drug Dispos 31:367–395.
  • Reny JL, Combescure C, Daali Y, et al. (2012). Influence of the paraoxonase-1 Q192R genetic variant on clopidogrel responsiveness and recurrent cardiovascular events: A systematic review and meta-analysis. J Thromb Haemost 10:1242–1251.
  • Riley RJ, Kitteringham NR, Park BK. (1989). Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro. Br J Clin Pharmacol 28:482–487.
  • Ritter JK. (2000). Roles of glucuronidation and UDP-glucuronosyltransferases in xenobiotic bioactivation reactions. Chem Biol Interact 129:171–193.
  • Rodriguez RJ, Acosta D Jr. (1997). N-deacetyl ketoconazole-induced hepatotoxicity in a primary culture system of rat hepatocytes. Toxicology 117:123–131.
  • Rodriguez RJ, Proteau PJ, Marquez BL, et al. (1999). Flavin-containing monooxygenase-mediated metabolism of N-deacetyl ketoconazole by rat hepatic microsomes. Drug Metab Dispos 27:880–886.
  • Sachse B, Meinl W, Sommer Y, et al. (2016). Bioactivation of food genotoxicants 5-hydroxymethylfurfural and furfuryl alcohol by sulfotransferases from human, mouse and rat: A comparative study. Arch Toxicol 90:137–148.
  • Saunders LR, Bankovich AJ, Anderson WC, et al. (2015). A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med 302:302ra136.
  • Saha S, New LS, Ho HK, et al. (2010). Direct toxicity effects of sulfo-conjugated troglitazone on human hepatocytes. Toxicol Lett 195:135–141.
  • Sallustio BC, Degraaf YC, Weekley JS, Burcham PC. (2006). Bioactivation of carboxylic acid compounds by UDP-Glucuronosyltransferases to DNA-damaging intermediates: Role of glycoxidation and oxidative stress in genotoxicity. Chem Res Toxicol 19:683–691.
  • Sanoh S, Tayama Y, Sugihara K, et al. (2015). Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 30:52–63.
  • Schulz H. (1987). Inhibitors of fatty acid oxidation. Life Sci 40:1443–1449.
  • Schmeiser HH, Stiborova M, Arlt VM. (2009). Chemical and molecular basis of the carcinogenicity of Aristolochia plants. Curr Opin Drug Discov Develop 12:141–148.
  • Sharma AM, Novalen M, Tanino T, Uetrecht JP. (2013). 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash. Chem Res Toxicol 26:817–827.
  • Shibutani S, Ravindernath A, Terashima I, et al. (2001). Mechanism of lower genotoxicity of toremifene compared with tamoxifen. Cancer Res 61:3925–3931.
  • Shimada T, Fujii-Kuriyama Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochromes P450 1A1 and 1B1. Cancer Sci 95:1–6.
  • Shao L-H, Liu S-P, Hou J-X, et al. (2012). Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study. Cancer 118:2986–2996.
  • Shu Y-Z, Johnson BM, Yang TJ. (2008). Role of biotransformation studies in minimizing metabolism-related liabilities in drug discovery. AAPS J 10:178–192.
  • Shon J, Abernethy DR. (2014). Application of systems pharmacology to explore mechanisms of hepatotoxicity. Clin Pharmacol Ther 96:536–537.
  • Sibbing D, Koch W, Massberg S, et al. (2011). No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J 32:1605–1613.
  • Sidorenko VS, Attaluri S, Zaitseva I, et al. (2014). Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis 35:1814–1822.
  • Silva MF, Aires CC, Luis PB, et al., (2008). Valproic acid metabolism and its effects on mitochondrial fatty acid oxidation: A review. J Inherit Metab Dis 31:205–216.
  • Sim E, Walters K, Boukouvala S. (2008). Arylamine N-acetyltransferases: From structure to function. Drug Metab Rev 40:479–510.
  • Slatter JG, Rashed MS, Pearson PG, et al. (1991). Biotransformation of methyl isocyanate in the rat. Evidence for glutathione conjugation as a major pathway of metabolism and implications for isocyanate-mediated toxicities. Chem Res Toxicol 4:157–161.
  • Smith PC, Benet LZ, McDonagh AF. (1990). Covalent binding of zomepirac glucuronide to proteins: Evidence for a Schiff base mechanism. Drug Metab Dispos 18:639–644.
  • Stangier J, Rathgen K, Gansser D, Roth W. (2007). The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 64:292–303.
  • Stiborova M, Poljakova J, Ryslava H, et al. (2007). Mammalian peroxidases activate anticancer drug ellipticine to intermediates forming deoxyguanosine adducts in DNA identical to those found in vivo and generated from 12-hydroxyellipticine and 13-hydroxyellipticine. Int J Cancer 120:243–251.
  • Stiborova M, Rupertova M, Frei E. (2011). Cytochrome P450- and peroxidase-mediated oxidation of anticancer alkaloid ellipticine dictates its anti-tumor efficiency. Biochim Biophys Acta 1814:175–185.
  • Surh YJ, Miller JA. (1994). Roles of electrophilic sulfuric acid ester metabolites in mutagenesis and carcinogenesis by some polynuclear aromatic hydrocarbons. Chem Biol Interact 92:351–362.
  • Tettey JN, Maggs JL, Rapeport WG, et al. (2001). Enzyme-induction dependent bioactivation of troglitazone and troglitazone quinone in vivo. Chem Res Toxicol 14:965–974.
  • Tang W, Lu AYH. (2010). Metabolic bioactivation and drug-related adverse effects: Current status and future directions from a pharmaceutical research perspective. Drug Metab Rev 42:225–249.
  • Thompson CD, Gulden PH, Macdonald TL. (1997). Identification of modified atropaldehyde mercapturic acids in rat and human urine after felbamate administration. Chem Res Toxicol 10:457–462.
  • Townsend DM, Hanigan MH. (2002). Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther 300:142–148.
  • Tornio A, Niemi M, Neuvonen M, et al. (2008). The effect of gemfibrozil on repaglinide pharmacokinetics persists for at least 12 h after the dose: Evidence for mechanism-based inhibition of CYP2C8 in vivo. Clin Pharmacol Ther 84:403–411.
  • Trevor AJ, Castagnoli N, Jr., Caldera P, et al. (1987). Bioactivation of MPTP: Reactive metabolites and possible biochemical sequelae. Life Sci 40:713–719.
  • Uetrecht J, Zahid N. (1988). N-chlorination of phenytoin by myeloperoxidase to a reactive metabolite. Chem Res Toxicol 1:148–151.
  • Valstar DL, Schijf MA, Nijkamp FP, et al. (2004). Glutathione-conjugated toluene diisocyanate causes airway inflammation in sensitized mice. Arch Toxicol 78:533–539.
  • van Bladeren PJ. (2000). Glutathione conjugation as a bioactivation reaction. Chem Biol Interact 129:61–76.
  • Van Ryn J, Stangier J, Haertter S, et al. (2010). Dabigatran etexilate – A novel, reversible, oral direct thrombin inhibitor: Interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost 103:1116–1127.
  • Vasiljeva O, Reinheckel T, Peters C, et al. (2007). Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13:387–403.
  • Wallace JL. (2012). NSAID gastropathy and enteropathy: Distinct pathogenesis likely necessitates distinct prevention strategies. Br J Pharmacol 165:67–74.
  • Walsh JS, Reese MJ, Thurmond LM. (2002). The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem-Biol Interact 142:135–154.
  • Walsh JS, Miwa GT. (2011). Bioactivation of drugs: Risk and drug design. Annu Rev Pharmacol Toxicol 51:145–167.
  • Weidle UH, Tiefenthaler G, Georges G. (2014). Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genom Proteom 11:67–80.
  • Wen B, Moore DJ. (2011). Bioactivation of glafenine by human liver microsomes and peroxidases: Identification of electrophilic iminoquinone species and GSH conjugates. Drug Metab Dispos 39:1511–1521.
  • Williams DP, Park BK. (2003). Idiosyncratic toxicity: The role of toxicophores and bioactivation. Drug Disco Today 8:1044–1050.
  • Yang K, Woodhead JL, Watkins PB, et al. (2014). Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther 96:589–598.
  • Yu J, Folmer JJ, Hoesch V, et al. (2011). Elucidation of a novel bioactivation pathway of a 3,4-unsubstituted isoxazole in human liver microsomes: Formation of a glutathione adduct of a cyanoacrolein derivative after isoxazole ring opening. Drug Metab Dispos 39:302–311.
  • Yuan JJ, Yang DC, Zhang JY, et al. (2002). Disposition of a specific cyclooxygenase-2 inhibitor, valdecoxib, in human. Drug Metab Dispos 30:1013–1021.
  • Yueh MF, Nguyen N, Famourzadeh M, et al. (2001). The contribution of UDP-glucuronosyltransferase 1A9 on CYP1A2-mediated genotoxicity by aromatic and heterocyclic amines. Carcinogenesis 22:943–950.
  • Zhang D, Raghavan N, Chen SY, et al. (2008). Reductive isoxazole ring opening of the anticoagulant razaxaban is the major metabolic clearance pathway in rats and dogs. Drug Metab Dispos 36:303–315.
  • Zhang D, Wang L, Raghavan N, et al. (2007). Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabolite profiling. Drug Metab Dispos 35:150–167.
  • Zhang F, Fan PW, Liu X, et al. (2000). Synthesis and reactivity of a potential carcinogenic metabolite of tamoxifen: 3,4-dihydroxytamoxifen-o-quinone. Chem Res Toxicol 13:53–62.
  • Zhang Y, Kolm RH, Mannervik B, Talalay P. (1995). Reversible conjugation of isothiocyanates with glutathione catalyzed by human glutathione transferases. Biochem Biophys Res Commun 206:748–755.
  • Zhou S, Chan E, Duan W, et al. (2005). Drug bioactivation covalent binding to target proteins and toxicity relevance. Drug Metab Rev 37:41–213.
  • Zhu H-J, Wang X, Gawronski BE, et al. (2013). Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther 344:665–672.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.