1,065
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Comparative metabolism of tramadol and tapentadol: a toxicological perspective

, , , , &
Pages 577-592 | Received 15 Jul 2016, Accepted 17 Aug 2016, Published online: 15 Sep 2016

References

  • Afilalo M, Stegmann JU, Upmalis D. (2010). Tapentadol immediate release: a new treatment option for acute pain management. J Pain Res 3:1–9.
  • Bouhifd M, Hartung T, Hogberg HT, et al. (2013). Review: toxicometabolomics. J Appl Toxicol 33:1365–1383.
  • Bourland JA, Collins AA, Chester SA, et al. (2010). Determination of tapentadol (Nucynta®) and N-desmethyltapentadol in authentic urine specimens by ultra-performance liquid chromatography-tandem mass spectrometry. J Anal Toxicol 34:450–457.
  • Burchell B, Coughtrie MW. (1997). Genetic and environmental factors associated with variation of human xenobiotic glucuronidation and sulfation. Environ Health Perspect 105 Suppl 4:739–747.
  • Campanero MA, Garcia-Quetglas E, Sadaba B, Azanza JR. (2004). Simultaneous stereoselective analysis of tramadol and its primary phase I metabolites in plasma by liquid chromatography. Application to a pharmacokinetic study in humans. J Chromatogr A 1031:219–228.
  • Carlquist JF, Moody DE, Knight S, et al. (2015). A possible mechanistic link between the CYP2C19 genotype, the methadone metabolite ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidene (EDDP), and methadone-induced corrected QT interval prolongation in a pilot study. Mol Diagn Ther 19:131–138.
  • Cavallari LH, Jeong H, Bress A. (2011). Role of cytochrome P450 genotype in the steps toward personalized drug therapy. Pharmgenomics Pers Med 4:123–136.
  • Coulter C, Taruc M, Tuyay J, Moore C. (2010). Determination of tapentadol and its metabolite N-desmethyltapentadol in urine and oral fluid using liquid chromatography with tandem mass spectral detection. J Anal Toxicol 34:458–463.
  • Court MH, Krishnaswamy S, Hao Q, et al. (2003). Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31:1125–1133.
  • Crettol S, Deglon JJ, Besson J, et al. (2006). ABCB1 and cytochrome P450 genotypes and phenotypes: influence on methadone plasma levels and response to treatment. Clin Pharmacol Ther 80:668–681.
  • Crettol S, Deglon JJ, Besson J, et al. (2005). Methadone enantiomer plasma levels, CYP2B6, CYP2C19, and CYP2C9 genotypes, and response to treatment. Clin Pharmacol Ther 78:593–604.
  • Daniels J, Kadlubar S. (2013). Sulfotransferase genetic variation: from cancer risk to treatment response. Drug Metab Rev 45:415–422.
  • Darbari DS, van Schaik RH, Capparelli EV, et al. (2008). UGT2B7 promoter variant -840G>A contributes to the variability in hepatic clearance of morphine in patients with sickle cell disease . Am J Hematol 83:200–202.
  • Dennis BB, Bawor M, Thabane L, et al. (2014). Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One 9:e86114.
  • DePriest AZ, Puet BL, Holt AC, et al. (2015). Metabolism and disposition of prescription opioids: a review. Forensic Sci Rev 27:115–145.
  • Dinis-Oliveira RJ. (2014). Metabolomics of drugs of abuse: a more realistic view of the toxicological complexity. Bioanalysis 6:3155–3159.
  • Dinis-Oliveira RJ. (2015). Metabolomics of cocaine: implications in toxicity. Toxicol Mech Methods 25:494–500.
  • Dinis-Oliveira RJ. (2016a). Metabolomics of Δ9-tetrahydrocannabinol: implications in toxicity. Drug Metab Rev 48:80–87.
  • Dinis-Oliveira RJ. (2016b). Metabolomics of methadone: clinical and forensic toxicological implications and variability of dose response. Drug Metab Rev. [Epub ahead of print]. doi: 10.1080/03602532.2016.1192642.
  • Dinis-Oliveira RJ. (2016c). Oxidative and non-oxidative metabolomics of ethanol. Curr Drug Metab 17:327–335.
  • Dousa M, Lehnert P, Adamusova H, Bosakova Z. (2013). Fundamental study of enantioselective HPLC separation of tapentadol enantiomers using cellulose-based chiral stationary phase in normal phase mode. J Pharm Biomed Anal 74:111–116.
  • Duthie DJ. (1998). Remifentanil and tramadol. Br J Anaesth 81:51–57.
  • Eagle K. (2012). Hypothesis: holiday sudden cardiac death: food and alcohol inhibition of SULT1A enzymes as a precipitant. J Appl Toxicol 32:751–755.
  • Eissing T, Lippert J, Willmann S. (2012). Pharmacogenomics of codeine, morphine, and morphine-6-glucuronide: model-based analysis of the influence of CYP2D6 activity, UGT2B7 activity, renal impairment, and CYP3A4 inhibition. Mol Diagn Ther 16:43–53.
  • Faria J, Barbosa J, Queiros O, et al. (2016). Comparative study of the neurotoxicological effects of tramadol and tapentadol in SH-SY5Y cells. Toxicology 359–360:1–10.
  • Gadel S, Crafford A, Regina K, Kharasch ED. (2013). Methadone N-demethylation by the common CYP2B6 allelic variant CYP2B6.6. Drug Metab Dispos 41:709–713.
  • Gadel S, Friedel C, Kharasch ED. (2015). Differences in Methadone Metabolism by CYP2B6 Variants. Drug Metab Dispos 43:994–1001.
  • Gamage N, Barnett A, Hempel N, et al. (2006). Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22.
  • Garcia-Quetglas E, Azanza JR, Sadaba B, et al. (2007). Pharmacokinetics of tramadol enantiomers and their respective phase I metabolites in relation to CYP2D6 phenotype. Pharmacol Res 55:122–130.
  • Gillen C, Haurand M, Kobelt DJ, Wnendt S. (2000). Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedebergs Arch Pharmacol 362:116–121.
  • Gillman PK. (2005). Monoamine oxidase inhibitors, opioid analgesics and serotonin toxicity. Br J Anaesth 95:434–441.
  • Giorgi M. (2012). Tramadol vs Tapentadol: A new Horizon in Pain Treatment? Am J Anim Vet Sci 7:7–11.
  • Giorgi M, Meizler A, Mills PC. (2012a). Pharmacokinetics of the novel atypical opioid tapentadol following oral and intravenous administration in dogs. Vet J 194:309–313.
  • Giorgi M, Meizler A, Mills PC. (2012b). Quantification of tapentadol in canine plasma by HPLC with spectrofluorimetric detection: development and validation of a new methodology. J Pharm Biomed Anal 67-68:148–153.
  • Gohler K, Brett M, Smit JW, et al. (2013). Comparative pharmacokinetics and bioavailability of tapentadol following oral administration of immediate- and prolonged-release formulations. Int J Clin Pharmacol Ther 51:338–348.
  • Gong L, Stamer UM, Tzvetkov MV, et al. (2014). PharmGKB summary: tramadol pathway. Pharmacogenet Genomics 24:374–380.
  • Grond S, Sablotzki A. (2004). Clinical pharmacology of tramadol. Clin Pharmacokinet 43:879–923.
  • Grun B, Merkel U, Riedel KD, et al. (2012). Contribution of CYP2C19 and CYP3A4 to the formation of the active nortilidine from the prodrug tilidine. Br J Clin Pharmacol 74:854–863.
  • Guay DR. (2009). Is tapentadol an advance on tramadol? Consult Pharm 24:833–840.
  • Han Y, Li L, Zhang Y, et al. (2015). Phenomics of vascular disease: the systematic approach to the combination therapy. Curr Vasc Pharmacol 13:433–440.
  • Harrison C, Smart D, Lambert DG. (1998). Stimulatory effects of opioids. Br J Anaesth 81:20–28.
  • Hartrick CT, Rodriguez Hernandez JR. (2012). Tapentadol for pain: a treatment evaluation. Expert Opin Pharmacother 13:283–286.
  • Hartrick CT, Rozek RJ. (2011). Tapentadol in pain management: a μ-opioid receptor agonist and noradrenaline reuptake inhibitor. CNS Drugs 25:359–370.
  • Hu Z, Deng Y, Hu C, et al. (2012). ¹H NMR-based metabonomic analysis of brain in rats of morphine dependence and withdrawal intervention. Behav Brain Res 231:11–19.
  • Hui-Chen L, Yang Y, Na W, et al. (2004). Pharmacokinetics of the enantiomers of trans-tramadol and its active metabolite, trans-O-demethyltramadol, in healthy male and female chinese volunteers. Chirality 16:112–118.
  • Jancova P, Anzenbacher P, Anzenbacherova E. (2010). Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 154:103–116.
  • Joly P, Gagnieu MC, Bardel C, et al. (2012). Genotypic screening of the main opiate-related polymorphisms in a cohort of 139 sickle cell disease patients. Am J Hematol 87:534–536.
  • Kell DB, Goodacre R. (2014). Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discov Today 19:171–182.
  • Kemp W, Schlueter S, Smalley E. (2013). Death due to apparent intravenous injection of tapentadol. J Forensic Sci 58:288–291.
  • Kharasch ED, Regina KJ, Blood J, Friedel C. (2015). Methadone pharmacogenetics: CYP2B6 polymorphisms determine plasma concentrations, clearance, and metabolism. Anesthesiology 123:1142–1153.
  • Kharasch ED, Stubbert K. (2013). Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol 53:305–313.
  • Kneip C, Terlinden R, Beier H, Chen G. (2008). Investigations into the drug–drug interaction potential of tapentadol in human liver microsomes and fresh human hepatocytes. Drug Metab Lett 2:67–75.
  • Kogel B, Terlinden R, Schneider J. (2014). Characterisation of tramadol, morphine and tapentadol in an acute pain model in Beagle dogs. Vet Anaesth Analg 41:297–304.
  • Kosten TR, George TP. (2002). The neurobiology of opioid dependence: implications for treatment. Sci Pract Perspect 1:13–20.
  • Kress HG. (2010). Tapentadol and its two mechanisms of action: is there a new pharmacological class of centrally-acting analgesics on the horizon? Eur J Pain 14:781–783.
  • KuKanich B, Papich MG. (2004). Pharmacokinetics of tramadol and the metabolite O-desmethyltramadol in dogs. J Vet Pharmacol Ther 27:239–246.
  • Lai J, Ma SW, Porreca F, Raffa RB. (1996). Tramadol, M1 metabolite and enantiomer affinities for cloned human opioid receptors expressed in transfected HN9.10 neuroblastoma cells. Eur J Pharmacol 316:369–372.
  • Larson SJ, Pestaner J, Prashar SK, et al. (2012). Postmortem distribution of tapentadol and N-desmethyltapentadol. J Anal Toxicol 36:440–443.
  • Lassen D, Damkier P, Brosen K. (2015). The pharmacogenetics of tramadol. Clin Pharmacokinet 54:825–836.
  • Laugesen S, Enggaard TP, Pedersen RS, et al. (2005). Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77:312–323.
  • Lee CR, McTavish D, Sorkin EM. (1993). Tramadol. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in acute and chronic pain states. Drugs 46:313–340.
  • Lee HK, Lebkowska-Wieruszewska B, Kim TW, et al. (2013). Pharmacokinetics of the novel atypical opioid tapentadol after intravenous, intramuscular and subcutaneous administration in cats. Vet J 198:620–624.
  • Lehtonen P, Sten T, Aitio O, et al. (2010). Glucuronidation of racemic O-desmethyltramadol, the active metabolite of tramadol. Eur J Pharm Sci 41:523–530.
  • Leppert W. (2011). CYP2D6 in the metabolism of opioids for mild to moderate pain. Pharmacology 87:274–285.
  • Levo A, Koski A, Ojanpera I, et al. (2003). Post-mortem SNP analysis of CYP2D6 gene reveals correlation between genotype and opioid drug (tramadol) metabolite ratios in blood. Forensic Sci Int 135:9–15.
  • Levran O, Peles E, Hamon S, et al. (2013). CYP2B6 SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addict Biol 18:709–716.
  • Li S, Todor A, Luo R. (2016). Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J 14:1–7.
  • Lotsch J, Skarke C, Liefhold J, Geisslinger G. (2004). Genetic predictors of the clinical response to opioid analgesics: clinical utility and future perspectives. Clin Pharmacokinet 43:983–1013.
  • Madadi P, Sistonen J, Silverman G, et al. (2013). Life-threatening adverse events following therapeutic opioid administration in adults: is pharmacogenetic analysis useful? Pain Res Manag 18:133–136.
  • Mahdy T, El-Shihi TH, Emara MM, et al. (2012a). Development and validation of a new GC-MS method for the detection of tramadol, O-desmethyltramadol, 6-acetylmorphine and morphine in blood, brain, liver and kidney of Wistar rats treated with the combination of heroin and tramadol. J Anal Toxicol 36:548–559.
  • Mahdy T, El-Shihi TH, Emara MM, Giorgi M. (2012b). New HPLC method to detect individual opioids (heroin and tramadol) and their metabolites in the blood of rats on combination treatment. J Chromatogr Sci 50:658–665.
  • Mannelli P, Patkar A, Rozen S, et al. (2009). Opioid use affects antioxidant activity and purine metabolism: preliminary results. Hum Psychopharmacol 24:666–675.
  • Matic M, Norman E, Rane A, et al. (2014). Effect of UGT2B7 -900G>A (-842G>A; rs7438135) on morphine glucuronidation in preterm newborns: results from a pilot cohort. Pharmacogenomics 15:1589–1597.
  • McClay JL, Adkins DE, Vunck SA, et al. (2013). Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure. Metabolomics 9:392–402.
  • Mehvar R, Elliott K, Parasrampuria R, Eradiri O. (2007). Stereospecific high-performance liquid chromatographic analysis of tramadol and its O-demethylated (M1) and N,O-demethylated (M5) metabolites in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 852:152–159.
  • Meng J, Zhang X, Wu H, et al. (2012). Morphine-induced conditioned place preference in mice: metabolomic profiling of brain tissue to find “molecular switch” of drug abuse by gas chromatography/mass spectrometry. Anal Chim Acta 710:125–130.
  • Mercier F, Claret L, Prins K, Bruno R. (2014). A model-based meta-analysis to compare efficacy and tolerability of tramadol and tapentadol for the treatment of chronic non-malignant pain. Pain Ther 3:31–44.
  • Meske DS, Xie JY, Oyarzo J, et al. (2014). Opioid and noradrenergic contributions of tapentadol in experimental neuropathic pain. Neurosci Lett 562:91–96.
  • Mouly S, Bloch V, Peoc'h K, et al. (2015). Methadone dose in heroin-dependent patients: role of clinical factors, comedications, genetic polymorphisms and enzyme activity. Br J Clin Pharmacol 79:967–977.
  • Nielsen AG, Pedersen RS, Noehr-Jensen L, et al. (2010). Two separate dose-dependent effects of paroxetine: mydriasis and inhibition of tramadol's O-demethylation via CYP2D6. Eur J Clin Pharmacol 66:655–660.
  • Nimmagadda D, Cherala G, Ghatta S. (2006). Cytosolic sulfotransferases. Indian J Exp Biol 44:171–182.
  • Noehr-Jensen L, Zwisler ST, Larsen F, et al. (2009). Escitalopram is a weak inhibitor of the CYP2D6-catalyzed O-demethylation of (+)-tramadol but does not reduce the hypoalgesic effect in experimental pain. Clin Pharmacol Ther 86:626–633.
  • Oliveira A, Dinis-Oliveira RJ, Nogueira A, et al. (2014). Genetic profile and cancer-related pain: A tale from two outlier cases with bone metastatic disease. Pain Med 15:710–712.
  • Overholser BR, Foster DR. (2011). Opioid pharmacokinetic drug-drug interactions. Am J Manag Care 17 Suppl 11:S276–S287.
  • Paar WD, Frankus P, Dengler HJ. (1992). The metabolism of tramadol by human liver microsomes. Clin Investig 70:708–710.
  • Paar WD, Poche S, Gerloff J, Dengler HJ. (1997). Polymorphic CYP2D6 mediates O-demethylation of the opioid analgesic tramadol. Eur J Clin Pharmacol 53:235–239.
  • Pedersen RS, Damkier P, Brosen K. (2006). Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol 62:513–521.
  • Pergolizzi J, Alegre C, Blake D, et al. (2012). Current considerations for the treatment of severe chronic pain: The potential for tapentadol. Pain Pract 12:290–306.
  • Pilgrim JL, Gerostamoulos D, Drummer OH. (2010). Deaths involving serotonergic drugs. Forensic Sci Int 198:110–117.
  • Pilgrim JL, Gerostamoulos D, Drummer OH. (2011). Deaths involving contraindicated and inappropriate combinations of serotonergic drugs. Int J Legal Med 125:803–815.
  • Power I. (2011). An update on analgesics. Br J Anaesth 107:19–24.
  • Raffa RB. (2008). Basic pharmacology relevant to drug abuse assessment: Tramadol as example. J Clin Pharm Ther 33:101–108.
  • Raffa RB, Buschmann H, Christoph T, et al. (2012). Mechanistic and functional differentiation of tapentadol and Tramadol. Expert Opin Pharmacother 13:1437–1449.
  • Ramirez T, Daneshian M, Kamp H, et al. (2013). Metabolomics in toxicology and preclinical research. ALTEX 30:209–225.
  • Rouguieg K, Picard N, Sauvage FL, et al. (2010). Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes. Drug Metab Dispos 38:40–45.
  • Sanchez Del Aguila MJ, Schenk M, Kern KU, et al. (2015). Practical considerations for the use of tapentadol prolonged release for the management of severe chronic pain. Clin Ther 37:94–113.
  • Schroder W, Tzschentke TM, Terlinden R, et al. (2011). Synergistic interaction between the two mechanisms of action of tapentadol in analgesia. J Pharmacol Exp Ther 337:312–320.
  • Scott LJ, Perry CM. (2000). Tramadol: A review of its use in perioperative pain. Drugs 60:139–176.
  • Singh DR, Nag K, Shetti AN, Krishnaveni N. (2013). Tapentadol hydrochloride: A novel analgesic. Saudi J Anaesth 7:322–326.
  • Skinner-Robertson S, Fradette C, Bouchard S, et al. (2015). Pharmacokinetics of tramadol and O-desmethyltramadol enantiomers following administration of extended-release tablets to elderly and young subjects. Drugs Aging 32:1029–1043.
  • Smit JW, Oh C, Rengelshausen J, et al. (2010). Effects of acetaminophen, naproxen, and acetylsalicylic acid on tapentadol pharmacokinetics: results of two randomized, open-label, crossover, drug–drug interaction studies. Pharmacotherapy 30:25–34.
  • Smith HS. (2009). Opioid metabolism. Mayo Clin Proc 84:613–624.
  • Stamer UM, Musshoff F, Kobilay M, et al. (2007). Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther 82:41–47.
  • Stamer UM, Stuber F. (2007). The pharmacogenetics of analgesia. Expert Opin Pharmacother 8:2235–2245.
  • Steigerwald I, Schenk M, Lahne U, et al. (2013). Effectiveness and tolerability of tapentadol prolonged release compared with prior opioid therapy for the management of severe, chronic osteoarthritis pain. Clin Drug Investig 33:607–619.
  • Subrahmanyam V, Renwick AB, Walters DG, et al. (2001). Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29:1146–1155.
  • Terlinden R, Kogel BY, Englberger W, Tzschentke TM. (2010). In vitro and in vivo characterization of tapentadol metabolites. Methods Find Exp Clin Pharmacol 32:31–38.
  • Terlinden R, Ossig J, Fliegert F, et al. (2007). Absorption, metabolism, and excretion of 14C-labeled tapentadol HCl in healthy male subjects. Eur J Drug Metab Pharmacokinet 32:163–169.
  • Tsutaoka BT, Ho RY, Fung SM, Kearney TE. (2015). Comparative toxicity of tapentadol and tramadol utilizing data reported to the national poison data system. Ann Pharmacother 49:1311–1316.
  • Tzschentke TM, Christoph T, Kogel B, et al. (2007). (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J Pharmacol Exp Ther 323:265–276.
  • Tzschentke TM, Christoph T, Kogel BY. (2014). The mu-opioid receptor agonist/noradrenaline reuptake inhibition (MOR-NRI) concept in analgesia: the case of tapentadol. CNS Drugs 28:319–329.
  • Tzvetkov MV, Saadatmand AR, Lotsch J, et al. (2011). Genetically polymorphic OCT1: Another piece in the puzzle of the variable pharmacokinetics and pharmacodynamics of the opioidergic drug tramadol. Clin Pharmacol Ther 90:143–150.
  • Unruh GE, Hamm S, Pw D, Dengler HJ. (1995). Isotope effects during metabolism of (+)− and (−)− trans tramadol isotopomers by human liver microsomes. Isotopes Environ Health Stud 31:247–253.
  • Vadivelu N, Mitra S, Narayan D. (2010). Recent advances in postoperative pain management. Yale J Biol Med 83:11–25.
  • Wade WE, Spruill WJ. (2009). Tapentadol hydrochloride: a centrally acting oral analgesic. Clin Ther 31:2804–2818.
  • Wang SC, Ho IK, Tsou HH, et al. (2013). Functional genetic polymorphisms in CYP2C19 gene in relation to cardiac side effects and treatment dose in a methadone maintenance cohort. omics 17:519–526.
  • World Health Organization. (2012). Tapentadol Pre-Review Report, Expert Committee on Drug Dependence, Thirty-fifth Meeting. Hammamet, Tunisia, 4–8 June 2012.
  • Wu WN, McKown LA, Gauthier AD, et al. (2001). Metabolism of the analgesic drug, tramadol hydrochloride, in rat and dog. Xenobiotica 31:423–441.
  • Wu WN, McKown LA, Liao S. (2002). Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32:411–425.
  • Xia S, Persaud S, Birnbaum A. (2015). Exploratory study on association of single-nucleotide polymorphisms with hydromorphone analgesia in ED. Am J Emerg Med 33:444–447.
  • Zaitsu K, Hayashi Y, Kusano M, et al. (2016). Application of metabolomics to toxicology of drugs of abuse: a mini review of metabolomics approach to acute and chronic toxicity studies. Drug Metab Pharmacokinet 31:21–26.
  • Zaitsu K, Miyawaki I, Bando K, et al. (2014). Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference. Anal Bioanal Chem 406:1339–1354.
  • Zhang M, Luo H, Xi Z, Rogaeva E. (2015). Drug repositioning for diabetes based on ‘omics’ data mining. PLoS One 10:e0126082.
  • Zheng T, Liu L, Aa J, et al. (2013). Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend 127:177–186.
  • Zhou SF. (2009a). Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part I. Clin Pharmacokinet 48:689–723.
  • Zhou SF. (2009b). Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part II. Clin Pharmacokinet 48:761–804.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.