806
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Microsomal cytochrome P450 as a target for drug discovery and repurposing

&
Pages 1-17 | Received 01 Sep 2016, Accepted 01 Nov 2016, Published online: 22 Nov 2016

References

  • Aboutabl ME, Zordoky BN, El-Kadi AO. (2009). 3-methylcholanthrene and benzo(a)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. Br J Pharmacol 158:1808–1819.
  • Alonso-Galicia M, Falck JR, Reddy KM, Roman RJ. (1999). 20-HETE agonists and antagonists in the renal circulation. Am J Physiol 277:F790–F796.
  • Alsaad AM, Zordoky BN, El-Sherbeni AA, El-Kadi AO. (2012). Chronic doxorubicin cardiotoxicity modulates cardiac cytochrome P450-mediated arachidonic acid metabolism in rats. Drug Metab Dispos 40:2126–2135.
  • Alsaad AM, Zordoky BN, Tse MM, El-Kadi AO. (2013). Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 45:173–195.
  • Andersen ME. (1981). Saturable metabolism and its relationship to toxicity. Crit Rev Toxicol 9:105–150.
  • Annalora AJ, Goodin DB, Hong WX, et al. (2010). Crystal structure of CYP24A1, a mitochondrial cytochrome P450 involved in vitamin D metabolism. J Mol Biol 396:441–451.
  • Anwar-Mohamed A, El-Sherbeni AA, Kim SH, et al. (2012). Acute arsenic toxicity alters cytochrome P450 and soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. Xenobiotica 42:1235–1247.
  • Anzenbacher P, Anzenbacherova E. (2001). Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58:737–747.
  • Anzenbacher P, Zanger UM. (2012). Metabolism of drugs and other xenobiotics. Weinheim, Germany: Wiley-VCH.
  • Axen E, Postlind H, Sjoberg H, Wikvall K. (1994). Liver mitochondrial cytochrome P450 CYP27 and recombinant-expressed human CYP27 catalyze 1 alpha-hydroxylation of 25-hydroxyvitamin D3. Proc Natl Acad Sci USA 91:10014–10018.
  • Bednar MM, Gross CE, Balazy MK, et al. (2000). 16(R)-hydroxy-5,8,11,14-eicosatetraenoic acid, a new arachidonate metabolite in human polymorphonuclear leukocytes. Biochem Pharmacol 60:447–455.
  • Benassayag C, Mignot TM, Haourigui M, et al. (1997). High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface. J Lipid Res 38:276–286.
  • Bibi Z. (2008). Role of cytochrome P450 in drug interactions. Nutr Metabol 5:27.
  • Blewett AJ, Varma D, Gilles T, et al. (2008). Development and validation of a high-performance liquid chromatography-electrospray mass spectrometry method for the simultaneous determination of 23 eicosanoids. J Pharm Biomed Anal 46:653–662.
  • Brash AR. (2001). Arachidonic acid as a bioactive molecule. J Clin Invest 107:1339–1345.
  • Brodie BB, Gillette JR, La Du BN. (1958). Enzymatic metabolism of drugs and other foreign compounds. Annu Rev Biochem 27:427–454.
  • Buczynski MW, Dumlao DS, Dennis EA. (2009). Thematic review series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 50:1015–1038.
  • Bureik M, Schiffler B, Hiraoka Y, et al. (2002). Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry 41:2311–2321.
  • Burke JE, Dennis EA. (2009). Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 50:S237–S242.
  • Bylund J, Kunz T, Valmsen K, Oliw EH. (1998). Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. J Pharmacol Exp Ther 284:51–60.
  • Capdevila J, Gil L, Orellana M, et al. (1988). Inhibitors of cytochrome P-450-dependent arachidonic acid metabolism. Arch Biochem Biophys 261:257–263.
  • Capdevila JH. (2007). Regulation of ion transport and blood pressure by cytochrome p450 monooxygenases. Curr Opin Nephrol Hypertens 16:465–470.
  • Capdevila JH, Falck JR, Harris RC. (2000). Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J Lipid Res 41:163–181.
  • Caterina P, Antonello DP, Chiara C, et al. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. J Res Med Sci 18:600–609.
  • Chang TK, Chen J, Lee WB. (2001). Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: Evidence for mechanism-based inactivation of CYP1A2. J Pharmacol Exp Ther 299:874–882.
  • Choi KH, Kim AJ, Son IJ, et al. (2010). Risk factors of drug interaction between warfarin and nonsteroidal anti-inflammatory drugs in practical setting. J Korean Med Sci 25:337–341.
  • Choudhary D, Jansson I, Stoilov I, et al. (2004). Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32:840–847.
  • Christmas P. (2015). Role of cytochrome P450s in inflammation. Adv Pharmacol 74:163–192.
  • Chuang SS, Helvig C, Taimi M, et al. (2004). CYP2U1, a novel human thymus- and brain-specific cytochrome P450, catalyzes omega- and (omega-1)-hydroxylation of fatty acids. J Biol Chem 279:6305–6314.
  • Chun YJ, Kim S, Kim D, et al. (2001). A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res 61:8164–8170.
  • Coon MJ. (2005). Cytochrome P450: nature's most versatile biological catalyst. Annu Rev Pharmacol Toxicol 45:1–25.
  • De Montellano PRO, Correia MA. (1995). Inhibition of cytochrome P450 enzymes. Cytochrome P450. New york: Springer, 305–364.
  • Deb S, Bandiera SM. (2009). Characterization and expression of extrahepatic CYP2S1. Expert Opin Drug Metab Toxicol 5:367–380.
  • Deng J, Carbone I, Dean RA. (2007). The evolutionary history of cytochrome P450 genes in four filamentous Ascomycetes. BMC Evol Biol 7:30. doi: 10.1186/1471-2148-7-30.
  • Doligalski CT, Tong Logan A, Silverman A. (2012). Drug interactions: A primer for the gastroenterologist. Gastroenterol Hepatol (N Y) 8:376–383.
  • Dubrac S, Lear SR, Ananthanarayanan M, et al. (2005). Role of CYP27A in cholesterol and bile acid metabolism. J Lipid Res 46:76–85.
  • Dufek MB, Bridges AS, Thakker DR. (2013). Intestinal first-pass metabolism by cytochrome p450 and not p-glycoprotein is the major barrier to amprenavir absorption. Drug Metab Dispos 41:1695–1702.
  • Edpuganti V, Mehvar R. (2013). UHPLC-MS/MS analysis of arachidonic acid and 10 of its major cytochrome P450 metabolites as free acids in rat livers: Effects of hepatic ischemia. J Chromatogr B Analyt Technol Biomed Life Sci 964:153–163.
  • El-Sherbeni AA, El-Kadi AO. (2014a). Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 87:456–466.
  • El-Sherbeni AA, El-Kadi AO. (2014b). Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: The involvement of CYP1As. Drug Metab Dispos 42:1498–1507.
  • El-Sherbeni AA, El-Kadi AO. (2014c). The role of epoxide hydrolases in health and disease. Arch Toxicol 88:2013–2032.
  • El-Sherbeni AA, El-Kadi AO. (2016). Repurposing resveratrol and fluconazole to modulate human cytochrome P450-mediated arachidonic acid metabolism. Mol Pharm 13:1278–1288.
  • Eldrup AB, Soleymanzadeh F, Taylor SJ, et al. (2009). Structure-based optimization of arylamides as inhibitors of soluble epoxide hydrolase. J Med Chem 52:5880–5895.
  • Elkhatali S, El-Sherbeni AA, Elshenawy OH, et al. (2015). 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy. Toxicol Appl Pharmacol 289:550–559.
  • Evangelista EA, Kaspera R, Mokadam NA, et al. (2013). Activity, inhibition, and induction of cytochrome P450 2J2 in adult human primary cardiomyocytes. Drug Metab Dispos 41:2087–2094.
  • Falck JR, Lumin S, Blair I, et al. (1990). Cytochrome P-450-dependent oxidation of arachidonic acid to 16-, 17-, and 18-hydroxyeicosatetraenoic acids. J Biol Chem 265:10244–10249.
  • Fan F, Muroya Y, Roman RJ. (2015). Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens 24:37–46.
  • Fleming I. (2014). The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev 66:1106–1140.
  • Food-and-Drug-Administration (2014). Drug development and drug interactions: Table of substrates, inhibitors and inducers [online]. Food and Drug Administration, Available from: http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm093664.htm [last accessed Date 2015].
  • Fowler S, Zhang H. (2008). In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: Current status on methodologies and their utility for predicting drug-drug interactions. AAPS J 10:410–424.
  • Fretland AJ, Omiecinski CJ. (2000). Epoxide hydrolases: Biochemistry and molecular biology. Chem Biol Interact 129:41–59.
  • Gan LS, Acebo AL, Alworth WL. (1984). 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo[a]pyrene hydroxylase activity in liver microsomes. Biochemistry 23:3827–3836.
  • Garfinkel D. (1958). Studies on pig liver microsomes. I. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys 77:493–509.
  • Gauthier KM, Deeter C, Krishna UM, et al. (2002). 14,15-Epoxyeicosa-5(Z)-enoic acid: A selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circ Res 90:1028–1036.
  • Golan DE. (2012). Principles of pharmacology: The pathophysiologic basis of drug therapy. 3rd ed. Philadelphia (PA): Wolters Kluwer/Lippincott Williams & Wilkins.
  • Gomez GA, Morisseau C, Hammock BD, Christianson DW. (2004). Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43:4716–4723.
  • Grant DF, Storms DH, Hammock BD. (1993). Molecular cloning and expression of murine liver soluble epoxide hydrolase. J Biol Chem 268:17628–17633.
  • Guengerich FP. (2008). Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21:70–83.
  • Gugler R, Allgayer H. (1990). Effects of antacids on the clinical pharmacokinetics of drugs. An update. Clin Pharmacokinet 18:210–219.
  • Hammarstrom S, Hamberg M, Samuelsson B, et al. (1975). Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5,8,10,14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc Natl Acad Sci USA 72:5130–5134.
  • Huang H, Al-Shabrawey M, Wang MH. (2016). Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat 122:45–53.
  • Huang SM, Temple R, Throckmorton DC, Lesko LJ. (2007). Drug interaction studies: Study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 81:298–304.
  • Hye Khan MA, Pavlov TS, Christain SV, et al. (2014). Epoxyeicosatrienoic acid analogue lowers blood pressure through vasodilation and sodium channel inhibition. Clin Sci (Lond) 127:463–474.
  • Iliff JJ, Jia J, Nelson J, et al. (2010). Epoxyeicosanoid signaling in CNS function and disease. Prostaglandins Other Lipid Mediat 91:68–84.
  • Imaoka S, Hashizume T, Funae Y. (2005). Localization of rat cytochrome P450 in various tissues and comparison of arachidonic acid metabolism by rat P450 with that by human P450 orthologs. Drug Metab Pharmacokinet 20:478–484.
  • Imig JD. (2012). Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 92:101–130.
  • Imig JD, Elmarakby A, Nithipatikom K, et al. (2010). Development of epoxyeicosatrienoic acid analogs with in vivo anti-hypertensive actions. Front Physiol 1:157. doi: 10.3389/fphys.2010.00157.
  • Inoue Y, Yu AM, Yim SH, et al. (2006). Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 47:215–227.
  • Ioannides C. (2002). Enzyme systems that metabolise drugs and other xenobiotics Chichester, New York: John Wiley & Sons.
  • Ioannides C. (2008). Cytochromes P450 role in the metabolism and toxicity of drugs and other xenobiotics. Cambridge: RSC Pub.
  • Jaehde U, Sorgel F, Reiter A, et al. (1995). Effect of probenecid on the distribution and elimination of ciprofloxacin in humans. Clin Pharmacol Ther 58:532–541.
  • Karlgren M, Gomez A, Stark K, et al. (2006). Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem Biophys Res Commun 341:451–458.
  • Kayama Y, Minamino T, Toko H, et al. (2009). Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206:1565–1574.
  • Kim S, Ko H, Park JE, et al. (2002). Design, synthesis, and discovery of novel trans-stilbene analogues as potent and selective human cytochrome P450 1B1 inhibitors. J Med Chem 45:160–164.
  • Klingenberg M. (1958). Pigments of rat liver microsomes. Arch Biochem Biophys 75:376–386.
  • Kramer MA, Tracy TS. (2008). Studying cytochrome P450 kinetics in drug metabolism. Expert Opin Drug Metab Toxicol 4:591–603.
  • Kuhn H, Banthiya S, Van Leyen K. (2015). Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta 1851:308–330.
  • Laethem RM, Balazy M, Falck JR, et al. (1993). Formation of 19(S)-, 19(R)-, and 18(R)-hydroxyeicosatetraenoic acids by alcohol-inducible cytochrome P450 2E1. J Biol Chem 268:12912–12918.
  • Lee CA, Jones JP 3rd, Katayama J, et al. (2012). Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity. Drug Metab Dispos 40:943–951.
  • Lewis DF, Watson E, Lake BG. (1998). Evolution of the cytochrome P450 superfamily: Sequence alignments and pharmacogenetics. Mutat Res 410:245–270.
  • Li AP. (2008). Drug-drug interactions in pharmaceutical development. Hoboken (NJ): Wiley-interscience.
  • Lozada A, Dujovne CA. (1994). Drug interactions with fibric acids. Pharmacol Ther 63:163–176.
  • Luo P, Wang MH. (2011). Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat 95:1–10.
  • Maayah ZH, El-Kadi AO. (2016). 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-kappaB-dependent mechanism. Arch Toxicol 90:359–373.
  • Makia NL, Goldstein JA. (2016). CYP2C8 Is a novel target of peroxisome proliferator-activated receptor alpha in human liver. Mol Pharmacol 89:154–164.
  • May M, Schindler C. (2016). Clinically and pharmacologically relevant interactions of antidiabetic drugs. Ther Adv Endocrinol Metab 7:69–83.
  • Meunier B, De Visser SP, Shaik S. (2004). Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 104:3947–3980.
  • Midzak A, Akula N, Lecanu L, Papadopoulos V. (2011). Novel androstenetriol interacts with the mitochondrial translocator protein and controls steroidogenesis. J Biol Chem 286:9875–9887.
  • Miksys S, Tyndale RF. (2013). Cytochrome P450-mediated drug metabolism in the brain. J Psychiatry Neurosci 38:152–163.
  • Miyata N, Seki T, Tanaka Y, et al. (2005). Beneficial effects of a new 20-hydroxyeicosatetraenoic acid synthesis inhibitor, TS-011 [N-(3-chloro-4-morpholin-4-yl) phenyl-N′hydroxyimido formamide], on hemorrhagic and ischemic stroke. J Pharmacol Exp Ther 314:77–85.
  • Miyata N, Taniguchi K, Seki T, et al. (2001). HET0016, a potent and selective inhibitor of 20-HETE synthesizing enzyme. Br J Pharmacol 133:325–329.
  • Mizrachi D, Wang Z, Sharma KK, et al. (2011). Why human cytochrome P450c21 is a progesterone 21-hydroxylase. Biochemistry 50:3968–3974.
  • Morisseau C. (2013). Role of epoxide hydrolases in lipid metabolism. Biochimie 95:91–95.
  • Morisseau C, Du G, Newman JW, Hammock BD. (1998). Mechanism of mammalian soluble epoxide hydrolase inhibition by chalcone oxide derivatives. Arch Biochem Biophys 356:214–228.
  • Morisseau C, Goodrow MH, Dowdy D, et al. (1999). Potent urea and carbamate inhibitors of soluble epoxide hydrolases. Proc Natl Acad Sci USA 96:8849–8854.
  • Morisseau C, Hammock BD. (2005). Epoxide hydrolases: Mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333.
  • Morisseau C, Hammock BD. (2013). Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58.
  • Muerhoff AS, Williams DE, Reich NO, et al. (1989). Prostaglandin and fatty acid omega- and (omega-1)-oxidation in rabbit lung. Acetylenic fatty acid mechanism-based inactivators as specific inhibitors. J Biol Chem 264:749–756.
  • Muller DN, Theuer J, Shagdarsuren E, et al. (2004). A peroxisome proliferator-activated receptor-alpha activator induces renal CYP2C23 activity and protects from angiotensin II-induced renal injury. Am J Pathol 164:521–532.
  • Murray GI, Melvin WT, Greenlee WF, Burke MD. (2001). Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol 41:297–316.
  • Nebert DW, Adesnik M, Coon MJ, et al. (1987). The P450 gene superfamily: Recommended nomenclature. DNA 6:1–11.
  • Nebert DW, Wikvall K, Miller WL. (2013). Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 368:20120431. doi: 10.1098/rstb.2012.0431.
  • Nelson DR. (2006). Cytochrome P450 nomenclature, 2004. Methods Mol Biol 320:1–10.
  • Nelson DR. (2009). The cytochrome p450 homepage. Hum Genomics 4:59–65.
  • Nelson JW, Alkayed NJ. (2012). Soluble epoxide hydrolase as a stroke target. Translational stroke research. New York: Springer, 277–294.
  • Nelson JW, Subrahmanyan RM, Summers SA, et al. (2013). Soluble epoxide hydrolase dimerization is required for hydrolase activity. J Biol Chem 288:7697–7703.
  • Newman JW, Morisseau C, Hammock BD. (2005). Epoxide hydrolases: Their roles and interactions with lipid metabolism. Prog Lipid Res 44:1–51.
  • Norwood S, Liao J, Hammock BD, Yang GY. (2010). Epoxyeicosatrienoic acids and soluble epoxide hydrolase: Potential therapeutic targets for inflammation and its induced carcinogenesis. Am J Transl Res 2:447–457.
  • Oliw EH. (1994). Oxygenation of polyunsaturated fatty acids by cytochrome P450 monooxygenases. Prog Lipid Res 33:329–354.
  • Omura T, Sato R. (1962). A new cytochrome in liver microsomes. J Biol Chem 237:1375–1376.
  • Ortiz De Montellano PR. (2005). Cytochrome P450 structure, mechanism, and biochemistry. New York: Kluwer Academic/Plenum Publishers.
  • Palakodety RB, Clejan LA, Krikun G, et al. (1988). Characterization and identification of a pyrazole-inducible form of cytochrome P-450. J Biol Chem 263:878–884.
  • Pandak WM, Hylemon PB, Ren S, et al. (2002). Regulation of oxysterol 7alpha-hydroxylase (CYP7B1) in primary cultures of rat hepatocytes. Hepatology 35:1400–1408.
  • Pandey AV, Kempna P, Hofer G, et al. (2007). Modulation of human CYP19A1 activity by mutant NADPH P450 oxidoreductase. Mol Endocrinol 21:2579–2595.
  • Pinot F, Grant DF, Spearow JL, et al. (1995). Differential regulation of soluble epoxide hydrolase by clofibrate and sexual hormones in the liver and kidneys of mice. Biochem Pharmacol 50:501–508.
  • Piver B, Berthou F, Dreano Y, Lucas D. (2001). Inhibition of CYP3A, CYP1A and CYP2E1 activities by resveratrol and other non-volatile red wine components. Toxicol Lett 125:83–91.
  • Podolin PL, Bolognese BJ, Foley JF, et al. (2013). In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. Prostaglandins Other Lipid Mediat 104–105:25–31.
  • Preskorn SH, Alderman J, Chung M, et al. (1994). Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 14:90–98.
  • Reddy MA, Thimmalapura PR, Lanting L, et al. (2002). The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 277:9920–9928.
  • Riviere JE. (2011). Comparative pharmacokinetics: Principles, techniques and applications. Hoboken (NJ): John Wiley & Sons.
  • Rodrigues AD. (2002). Drug-drug interactions. New York: M. Dekker.
  • Roman RJ. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185.
  • Rouzer CA, Marnett LJ. (2009). Cyclooxygenases: Structural and functional insights. J Lipid Res 50:S29–S34.
  • Ruan KH, Li P, Kulmacz RJ, Wu KK. (1994). Characterization of the structure and membrane interaction of NH2-terminal domain of thromboxane A2 synthase. J Biol Chem 269:20938–20942.
  • Russo GL. (2009). Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol 77:937–946.
  • Rustan AC, Drevon CA. (2001). Fatty acids: Structures and properties. In eLS. Chichester: John Wiley & Sons, Ltd.
  • Sacerdoti D, Gatta A, Mcgiff JC. (2003). Role of cytochrome P450-dependent arachidonic acid metabolites in liver physiology and pathophysiology. Prostaglandins Other Lipid Mediat 72:51–71.
  • Salsali M, Holt A, Baker GB. (2004). Inhibitory effects of the monoamine oxidase inhibitor tranylcypromine on the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP2D6. Cell Mol Neurobiol 24:63–76.
  • Schwarz D, Chernogolov A, Kisselev P. (1999). Complex formation in vesicle-reconstituted mitochondrial cytochrome P450 systems (CYP11A1 and CYP11B1) as evidenced by rotational diffusion experiments using EPR and ST-EPR. Biochemistry 38:9456–9464.
  • Shen HC, Hammock BD. (2012). Discovery of inhibitors of soluble epoxide hydrolase: A target with multiple potential therapeutic indications. J Med Chem 55:1789–1808.
  • Shier WT. (1979). Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci USA 76:195–199.
  • Shimada T, Watanabe J, Kawajiri K, et al. (1999). Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20:1607–1613.
  • Shinkyo R, Sakaki T, Kamakura M, et al. (2004). Metabolism of vitamin D by human microsomal CYP2R1. Biochem Biophys Res Commun 324:451–457.
  • Slavotinek AM, Mehrotra P, Nazarenko I, et al. (2013). Focal facial dermal dysplasia, type IV, is caused by mutations in CYP26C1. Hum Mol Genet 22:696–703.
  • Sono M, Roach MP, Coulter ED, Dawson JH. (1996). Heme-containing oxygenases. Chem Rev 96:2841–2888.
  • Spector AA, Kim HY. (2015). Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta 1851:356–365.
  • Stec DE, Gannon KP, Beaird JS, Drummond HA. (2007). 20-Hydroxyeicosatetraenoic acid (20-HETE) stimulates migration of vascular smooth muscle cells. Cell Physiol Biochem 19:121–128.
  • Sudhahar V, Shaw S, Imig JD. (2010). Epoxyeicosatrienoic acid analogs and vascular function. Curr Med Chem 17:1181–1190.
  • Taxak N, Desai PV, Patel B, et al. (2012). Metabolic-intermediate complex formation with cytochrome P450: Theoretical studies in elucidating the reaction pathway for the generation of reactive nitroso intermediate. J Comput Chem 33:1740–1747.
  • Thomas H, Schladt L, Knehr M, Oesch F. (1989). Effect of diabetes and starvation on the activity of rat liver epoxide hydrolases, glutathione S-transferases and peroxisomal beta-oxidation. Biochem Pharmacol 38:4291–4297.
  • Tripathy S, Chapman JD, Han CY, et al. (2016). All-trans-retinoic acid enhances mitochondrial function in models of human liver. Mol Pharmacol 89:560–574.
  • Tse MM, Aboutabl ME, Althurwi HN, et al. (2013). Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. Vascul Pharmacol 58:363–373.
  • Ullrich V, Brugger R, Lottspeich F, Siegle I. (1997). Properties of prostacyclin synthase. Adv Exp Med Biol 400A:113–119.
  • Van Vleet TR, Bombick DW, Coulombe RA Jr. (2001). Inhibition of human cytochrome P450 2E1 by nicotine, cotinine, and aqueous cigarette tar extract in vitro. Toxicol Sci 64:185–191.
  • Wang MH, Brand-Schieber E, Zand BA, et al. (1998). Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: Characterization of selective inhibitors. J Pharmacol Exp Ther 284:966–973.
  • Werck-Reichhart D, Feyereisen R. (2000). Cytochromes P450: A success story. Genome Biol 1:REVIEWS3003.
  • Westphal C, Konkel A, Schunck WH. (2015). Cytochrome p450 enzymes in the bioactivation of polyunsaturated fatty acids and their role in cardiovascular disease. Adv Exp Med Biol 851:151–187.
  • Wickramashighe RH, Villee CA. (1975). Early role during chemical evolution for cytochrome P450 in oxygen detoxification. Nature 256:509–510.
  • Wilson LD, Oldham SB, Harding BW. (1968). Cytochrome P450 and steroid 11beta-hydroxylation in mitochondria from human adrenal cortex. J Clin Endocrinol Metab 28:1143–1152.
  • Xu F, Falck JR, Ortiz De Montellano PR, Kroetz DL. (2004). Catalytic activity and isoform-specific inhibition of rat cytochrome p450 4F enzymes. J Pharmacol Exp Ther 308:887–895.
  • Xu H, Valenzuela N, Fai S, et al. (2013). Targeted lipidomics – advances in profiling lysophosphocholine and platelet-activating factor second messengers. FEBS J 280:5652–5667.
  • Yang W, Holmes BB, Gopal VR, et al. (2007). Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: Use for studies of metabolism and ligand binding. J Pharmacol Exp Ther 321:1023–1031.
  • Zhang D, Luo G, Ding X, Lu C. (2012). Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B 2:549–561.
  • Zhang F, Deng H, Kemp R, et al. (2005). Decreased levels of cytochrome P450 2E1-derived eicosanoids sensitize renal arteries to constrictor agonists in spontaneously hypertensive rats. Hypertension 45:103–108.
  • Zhang W, Ramamoorthy Y, Kilicarslan T, et al. (2002). Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab Dispos 30:314–318.
  • Zhao L, Funk CD. (2004). Lipoxygenase pathways in atherogenesis. Trends Cardiovasc Med 14:191–195.
  • Zordoky BN, Aboutabl ME, El-Kadi AO. (2008). Modulation of cytochrome P450 gene expression and arachidonic acid metabolism during isoproterenol-induced cardiac hypertrophy in rats. Drug Metab Dispos 36:2277–2286.
  • Zou AP, Fleming JT, Falck JR, et al. (1996). 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K + channel in renal arterioles. Am J Physiol 270:R228–R237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.