465
Views
28
CrossRef citations to date
0
Altmetric
Review

The Val158Met polymorphism in COMT gene and cancer risk: role of endogenous and exogenous catechols

Pages 56-83 | Received 06 Sep 2016, Accepted 01 Nov 2016, Published online: 23 Nov 2016

References

  • Akisik E, Dalay N. (2007). Functional polymorphism of thymidylate synthase, but not of the COMT and IL-1B genes, is associated with breast cancer. J Clin Lab Anal 21:97–102.
  • Androutsopoulos VP, Spandidos DA. (2013). The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J Nutr Biochem 24:496–504.
  • Ashton KA, Meldrum CJ, McPhillips ML, et al. (2006). The association of the COMT V158M polymorphism with endometrial/ovarian cancer in HNPCC families adhering to the Amsterdam Criteria. Hered Cancer Clin Pract 4:94–102.
  • Axelrod J, Tomchichk R. (1958). Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 233:702–705.
  • Axelrod J, Senoh S, Witkop B. (1958). O-Methylation of catechol amines in vivo. J Biol Chem 233:697–701.
  • Baclig MO, Predicala RZ, Mapua CA, et al. (2012). Allelic and genotype frequencies of catechol-O-methyltransferase (Val158Met) and CYP2D6*10 (Pro34Ser) single nucleotide polymorphisms in the Philippines. Int J Mol Epidemiol Genet 3:115–121.
  • Bai HW, Shim JY, Yu J, Zhu BT. (2007). Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases. Chem Res Toxicol 20:1409–1425.
  • Barrajon-Catalan E, Taamalli A, Quirantes-Pine R, et al. (2015). Differential metabolomic analysis of the potential antiproliferative mechanism of olive leaf extract on the JIMT-1 breast cancer cell line. J Pharm Biomed Anal 105:156–162.
  • Bergman-Jungeström M, Wingren S. (2001). Catechol-O-methyltransferase (COMT) gene polymorphism and breast cancer risk in young women. Br J Cancer 85:859–862.
  • Borchardt RT, Huber JA. (1975). Catechol O-methyltransferase. 5. Structure-activity relationships for inhibition by flavonoids. J Med Chem 18:120–122.
  • Bräuner EV, Loft S, Wellejus A, et al. (2014). Adipose tissue PCB levels and CYP1B1 and COMT genotypes in relation to breast cancer risk in postmenopausal Danish women. Int J Environ Health Res 24:256–268.
  • Brureau L, Moningo D, Emeville E, et al. (2016). Polymorphisms of estrogen metabolism-related genes and prostate cancer risk in two populations of African ancestry. PLoS One 11:e0153609.
  • Campbell PT, Edwards L, McLaughlin JR, et al. (2007). Cytochrome P450 17A1 and catechol O-methyltransferase polymorphisms and age at Lynch syndrome colon cancer onset in Newfoundland. Clin Cancer Res 13:3783–3788.
  • Cao Y, Chen ZJ, Jiang HD, Chen JZ. (2014). Computational studies of the regioselectivities of COMT-catalyzed meta-/para-O methylations of luteolin and quercetin. J Phys Chem B 118:470–481.
  • Cerne JZ, Novakovic S, Frkovic-Grazio S, et al. (2011a). Estrogen metabolism genotypes, use of long-term hormone replacement therapy and risk of postmenopausal breast cancer. Oncol Rep 26:479–485.
  • Cerne JZ, Pohar-Perme M, Novakovic S, et al. (2011b). Combined effect of CYP1B1, COMT, GSTP1, and MnSOD genotypes and risk of postmenopausal breast cancer. J Gynecol Oncol 22:110–119.
  • Chen D, Wang CY, Lambert JD, et al. (2005). Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure-activity relationship and molecular-modeling studies. Biochem Pharmacol 69:1523–1531.
  • Chen Z, Chen M, Pan H, et al. (2011). Role of catechol-O-methyltransferase in the disposition of luteolin in rats. Drug Metab Dispos 39:667–674.
  • Chen Z, Zheng S, Li L, Jiang H. (2014). Metabolism of flavonoids in human: A comprehensive review. Curr Drug Metab 15:48–61.
  • Chen ZJ, Dai YQ, Kong SS, et al. (2013). Luteolin is a rare substrate of human catechol-O-methyltransferase favoring a para-methylation. Mol Nutr Food Res 57:877–885.
  • Cheng TC, Chen ST, Huang CS, et al. (2005). Breast cancer risk associated with genotype polymorphism of the catechol estrogen-metabolizing genes: A multigenic study on cancer susceptibility. Int J Cancer 113:345–353.
  • Cote ML, Yoo W, Wenzlaff AS, et al. (2009). Tobacco and estrogen metabolic polymorphisms and risk of non-small cell lung cancer in women. Carcinogenesis 30:626–635.
  • Cribb AE, Joy Knight M, Guernsey J, et al. (2011). CYP17, catechol-o-methyltransferase, and glutathione transferase M1 genetic polymorphisms, lifestyle factors, and breast cancer risk in women on Prince Edward Island. Breast J 17:24–31.
  • Delgado L, Fernandes I, Gonzalez-Manzano S, et al. (2014). Anti-proliferative effects of quercetin and catechin metabolites. Food Funct 5:797–803.
  • Delort L, Chalabi N, Satih S, et al. (2008). Association between genetic polymorphisms and ovarian cancer risk. Anticancer Res 28:3079–3081.
  • Delort L, Satih S, Kwiatjowski F, et al. (2010). Evaluation of breast cancer risk in a multigenic model including low penetrance genes involved in xenobiotic and estrogen metabolisms. Nutr Cancer 62:243–251.
  • Dias Pereira P, Lopes CC, Matos AJ, et al. (2008). Estrogens metabolism associated with polymorphisms: Influence of COMT G482a genotype on age at onset of canine mammary tumors. Vet Pathol 45:124–130.
  • Dias Pereira P, Lopes CC, Matos AJ, et al. (2009). Influence of catechol-O-methyltransferase (COMT) genotypes on the prognosis of canine mammary tumors. Vet Pathol 46:1270–1274.
  • Diergaarde B, Potter JD, Jupe ER, et al. (2008). Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 17:1751–1759.
  • Ding H, Fu Y, Chen W, Wang Z. (2010). COMT Val158Met polymorphism and breast cancer risk: Evidence from 26 case-control studies. Breast Cancer Res Treat 123:265–270.
  • Doherty JA, Weiss NS, Freeman RJ, et al. (2005). Genetic factors in catechol estrogen metabolism in relation to the risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 14:357–366.
  • dos Santos RA, Teixeira AC, Mayorano MB, et al. (2011). Variability in estrogen-metabolizing genes and their association with genomic instability in untreated breast cancer patients and healthy women. J Biomed Biotechnol 2011:571784.
  • Doyle AE, Yager JD. (2008). Catechol-O-methyltransferase: effects of the val108met polymorphism on protein turnover in human cells. Biochim Biophys Acta 1780:27–33.
  • Doyle AE, Goodman JE, Silber PM, Yager JD. (2004). Catechol-O-methyltransferase low activity genotype (COMTLL) is associated with low levels of COMT protein in human hepatocytes. Cancer Lett 214:189–195.
  • Du JZ, Dong YL, Wan GX, et al. (2014). Lack of association between the COMT rs4680 polymorphism and ovarian cancer risk: Evidence from a meta-analysis of 3,940 individuals. Asian Pac J Cancer Prev 15:7941–7945.
  • Fontana L, Delort L, Joumard L, et al. (2009). Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Res 29:1631–1635.
  • Forester SC, Lambert JD. (2014). Synergistic inhibition of lung cancer cell lines by (-)-epigallocatechin-3-gallate in combination with clinically used nitrocatechol inhibitors of catechol-O-methyltransferase. Carcinogenesis 35:365–372.
  • Garner EI, Stokes EE, Berkowitz RS, et al. (2002). Polymorphisms of the estrogen-metabolizing genes CYP17 and catechol-O-methyltransferase and risk of epithelial ovarian cancer. Cancer Res 62:3058–3062.
  • Gaudet MM, Bensen JT, Schroeder J, et al. (2006a). Catechol-O-methyltransferase haplotypes and breast cancer among women on Long Island, New York. Breast Cancer Res Treat 99:235–240.
  • Gaudet MM, Chanock S, Lissowska J, et al. (2006b). Comprehensive assessment of genetic variation of catechol-O-methyltransferase and breast cancer risk. Cancer Res 66:9781–9785.
  • Ghisari M, Eiberg H, Long M, Bonefeld-Jorgensen EC. (2014). Polymorphisms in phase I and phase II genes and breast cancer risk and relations to persistent organic pollutant exposure: A case-control study in Inuit women. Envrion Health 13:19.
  • Goodman JE, Lavigne JA, Hengstler JG, et al. (2000). Catechol-O-methyltransferase polymorphism is not associated with ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 9:1373–1376.
  • Goodman JE, Lavigne JA, Wu K, et al. (2001a). COMT genotype, micronutrients in the folate metabolic pathway and breast cancer risk. Carcinogenesis 22:1661–1665.
  • Goodman MT, McDuffie K, Kolonel LN, et al. (2001b). Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol Biomarkers Prev 10:209–216.
  • Hamaguchi M, Nishio M, Toyama T, et al. (2008). Possible difference in frequencies of genetic polymorphisms of estrogen receptor alpha, estrogen metabolism and P53 genes between estrogen receptor-positive and -negative breast cancers. Jpn J Clin Oncol 38:734–742.
  • Hamajima N, Matsuo K, Tajima K, et al. (2001). Limited association between a catechol-O-methyltransferase (COMT) polymorphism and breast cancer risk in Japan. Int J Clin Oncol 6:13–18.
  • He XF, Wei W, Li SX, et al. (2012). Association between the COMT Val158Met polymorphism and breast cancer risk: A meta-analysis of 30,199 cases and 38,922 controls. Mol Biol Rep 39:6811–6823.
  • Hirata H, Hinoda Y, Okayama N, et al. (2008). COMT polymorphisms affecting protein expression are risk factors for endometrial cancer. Mol Carcinog 47:768–774.
  • Holt SK, Rossing MA, Malone KE, et al. (2007). Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol Biomarkers Prev 16:481–489.
  • Hong CC, Thompson HJ, Jiang C, et al. (2003). Val158Met Polymorphism in catechol-O-methyltransferase gene associated with risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 12:838–847.
  • Hu Z, Song CG, Lu JS, et al. (2007). A multigenic study on breast cancer risk associated with genetic polymorphisms of ER alpha, COMT and CYP19 gene in BRCA1/BRCA2 negative Shanghai women with early onset breast cancer or affected relatives. J Cancer Res Clin Oncol 133:969–978.
  • Huang CG, Iv GD, Liu T, et al. (2011). Polymorphisms of COMT and XPD and risk of esophageal squamous cell carcinoma in a population of Yili Prefecture, in Xinjiang, China. Biomarkers 16:37–41.
  • Huang CS, Chern HD, Chang KJ, et al. (1999). Breast cancer risk associated with genotype polymorphism of the estrogen-metabolizing genes CYP17, CYP1A1, and COMT: A multigenic study on cancer susceptibility. Cancer Res 59:4870–4875.
  • Huber A, Bentz EK, Schneeberger C, et al. (2005). Ten polymorphisms of estrogen-metabolizing genes and a family history of colon cancer: An association study of multiple gene-gene interactions. J Soc Gynecol Investig 12:e51–e54.
  • Hung RJ, Boffetta P, Brennan P, et al. (2004). Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis 25:973–978.
  • Inoue H, Shibuta K, Matsuyama A, et al. (2005). Genetic susceptibility of catechol-O-methyltransferase polymorphism in Japanese patients with breast cancer. Oncol Rep 14:707–712.
  • Inoue-Choi M, Yuan JM, Yang CS, et al. (2010). Genetic association between the COMT genotype and urinary levels of tea polyphenols and their metabolites among daily green tea drinkers. Int J Mol Epidemiol Genet 1:114–123.
  • Iwasaki M, Mizusawa J, Kasuga Y, et al. (2014). Green tea consumption and breast cancer risk in Japanese women: A case-control study. Nutr Cancer 66:57–67.
  • Jaramillo S, Lopez S, Varela LM, et al. (2010). The flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells. J Agric Food Chem 58:10869–10875.
  • Ji Y, Olson J, Zhang J, et al. (2008). Breast cancer risk reduction and membrane-bound catechol O-methyltransferase genetic polymorphisms. Cancer Res 68:5997–6005.
  • Kleine JP, Camargo-Kosugi CM, Carvalho CV, et al. (2015). Analysis of CYP1A1 and COMT polymorphisms in women with cervical cancer. Genet Mol Res 14:18965–18973.
  • Kocabas NA, Sardas S, Cholerton S, et al. (2002). Cytochrome P450 CYP1B1 and catechol O-methyltransferase (COMT) genetic polymorphisms and breast cancer susceptibility in a Turkish population. Arch Toxicol 76:643–649.
  • Kuntz S, Wenzel U, Daniel H. (1999). Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity, and apoptosis in human colon cancer cell lines. Eur J Nutr 38:133–142.
  • Lajin B, Hamzeh AR, Ghabreau L, et al. (2013). Catechol-O-methyltransferase Val 108/158 Met polymorphism and breast cancer risk: A case control study in Syria. Breast Cancer 20:62–66.
  • Landi S, Gemignani F, Moreno V, et al. (2005). A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of colorectal cancer. Pharmacogenet Genomics 15:535–546.
  • Landis-Piwowar K, Chen D, Chan TH, Dou QP. (2010). Inhibition of catechol-O-methyltransferase activity in human breast cancer cells enhances the biological effect of the green tea polyphenol (-)-EGCG. Oncol Rep 24:563–569.
  • Landis-Piwowar KA, Wan SB, Wiegand RA, et al. (2007). Methylation suppresses the proteasome-inhibitory function of green tea polyphenols. J Cell Physiol 213:252–260.
  • Lavigne JA, Helslsouer KJ, Huang HY, et al. (1997). An association between the allele coding for a low activity variant of catechol-O-methyltransferase and the risk for breast cancer. Cancer Res 57:5493–5497.
  • Lemanska K, van der Woude H, Szymusiak H, et al. (2004). The effect of catechol O-methylation on radical scavenging characteristics of quercetin and luteolin-a mechanistic insight. Free Radic Res 38:639–647.
  • Li K, Li W, Zou H. (2014). Catechol-O-methyltransferase Val158Met polymorphism and breast cancer risk in Asian population. Tumour Biol 35:2343–2350.
  • Li Y, Yang X, van Breemen RB, Bolton JL. (2005). Characterization of two new variants of human catechol O-methyltransferase in vitro. Cancer Lett 230:81–89.
  • Lim WY, Chen Y, Chuah KL, et al. (2012). Female reproductive factors, gene polymorphisms in the estrogen metabolism pathway, and risk of lung cancer in Chinese women. Am J Epidemiol 175:492–503.
  • Lin AS, Lin CR, Du YC, et al. (2009). Acasiane A and B and farnesirane A and B, diterpene derivatives from the roots of Acacia farnesiana. Planta Med 75:256–261.
  • Lin G, Zhao J, Wu J, et al. (2013). Contribution of catechol-O-methyltransferase Val158Met polymorphism to endometrial cancer risk in postmenopausal women: A meta-analysis. Genet Mol Res 12:6442–6453.
  • Lin SC, Chou YC, Wu MH, et al. (2005a). Genetic variants of myeloperoxidase and catechol-O-methyltransferase and breast cancer risk. Eur J Cancer Prev 14:257–261.
  • Lin WY, Chou YC, Wu MH, et al. (2005b). Polymorphic catechol-O-methyltransferase gene, duration of estrogen exposure, and breast cancer risk: A nested case-control study in Taiwan. Cancer Detect Prev 29:427–432.
  • Liu JX, Luo RC, Li R, et al. (2014). Lack of associations of the COMT Val158Met polymorphism with risk of endometrial and ovarian cancer: a pooled analysis of case-control studies. Asian Pac J Cancer Prev 15:6181–6186.
  • Loa J, Chow P, Zhang K. (2009). Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemother Pharmacol 63:1007–1016.
  • Long JR, Cai Q, Shu XO, et al. (2007). Genetic polymorphisms in estrogen-metabolizing genes and breast cancer survival. Pharmacogenet Genomics 17:331–338.
  • Lorenz M, Paul F, Moobed M, et al. (2014). The activity of catechol-O-methyltransferase (COMT) is not impaired by high doses of epigallocatechin-3-gallate (EGCG) in vivo. Eur J Pharmacol 740:645–651.
  • Lotta T, Vidgren J, Tilgmann C, et al. (1995). Kinetics of human soluble and membrane-bound catechol O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34:4202–4210.
  • Lu H, Meng X, Yang CS. (2003). Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metab Dispos 31:572–579.
  • Mao C, Wang XW, Qiu LX, et al. (2010). Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: a meta-analysis of 25,627 cases and 34,222 controls. Breast Cancer Res Treat 121:719–725.
  • MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk (2010). Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res Treat 119:463–474.
  • Martinez-Ramirez OC, Perez-Morales R, Castro C, et al. (2013). Polymorphisms of catechol estrogens metabolism pathway genes and breast cancer risk in Mexican women. Breast 22:335–343.
  • Mas S, Laso N, Lafuente MJ, et al. (2003). Cancer, genes, and catechol estrogen metabolites. Int J Clin Oncol 8:65–66.
  • Matos A, Castelao C, Pereira da Silva A, et al. (2016). Epistatic interaction of CYP1A1 and COMT polymorphisms in cervical cancer. Oxid Med Cell Longev 2016:2769804.
  • Matsui A, Ikeda T, Enomoto K, et al. (2000). Progression of human breast cancers to the metastatic state is linked to genotypes of catechol-O-methyltransferase. Cancer Lett 150:23–31.
  • McGrath M, Hankinson SE, Arbeitman L, et al. (2004). Cytochrome P450 1B1 and catechol-O-methyltransferase polymorphisms and endometrial cancer susceptibility. Carcinogenesis 25:559–565.
  • Millikan RC, Pittman GS, Tse CK, et al. (1998). Catechol-O-methyltransferase and breast cancer risk. Carcinogenesis 19:1943–1947.
  • Mitrunen K, Jourenkova N, Kataja V, et al. (2001). Polymorphic catechol-O-methyltransferase gene and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:635–640.
  • Miyoshi Y, Noguchi S. (2003). Polymorphisms of estrogen synthesizing and metabolizing genes and breast cancer risk in Japanese women. Biomed Pharmacother 57:471–481.
  • Moreno-Galvan M, Herrera-Gonzalez NE, Robles-Perez V, et al. (2010). Impact of CYP1A1 and COMT genotypes on breast cancer risk in Mexican women: a pilot study. Int J Biol Markers 25:157–163.
  • Nagai M, Conney AH, Zhu BT. (2004). Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase. Drug Metab Dispos 32:497–504.
  • Naushad SM, Pavani A, Rupasree Y, et al. (2011a). Modulatory effect of plasma folate and polymorphisms in one-carbon metabolism on catecholamine methyltransferase (COMT) H108L associated oxidative DNA damage and breast cancer risk. Indian J Biochem Biophys 48:283–289.
  • Naushad SM, Reddy CA, Rupasree Y, et al. (2011b). Cross-talk between one-carbon metabolism and xenobiotic metabolism: Implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys 61:715–723.
  • Newell AM, Yousef GG, Lila MA, et al. (2010). Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J Ethnopharmacol 130:536–544.
  • Nicolini F, Burmistrova O, Marrero MT, et al. (2014). Induction of G2/M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Mol Carcinog 53:939–950.
  • Omrani MD, Bazargani S, Bagheri M, Yazdan-Nejad H. (2009). Association of catechol-o-methyl transferase gene polymorphism with prostate cancer and benign prostatic hyperplasia. J Res Med Sci 14:217–222.
  • Onay UV, Aaltronen K, Briollais L, et al. (2008). Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk. BMC Cancer 8:6.
  • Pan W, Liao H. (2015). Correlations between the COMT gene rs4680 polymorphism and susceptibility to ovarian cancer. Genet Mol Res 14:16813–16818.
  • Peng S, Tong X, Liu S, et al. (2015). Association between the COMT 158 G/A polymorphism and lung cancer risk: A meta-analysis. Int J Clin Exp Med 8:17739–17747.
  • Peterson NB, Trentham-Dietz A, Garcia-Closas M, et al. (2010). Association of COMT haplotypes and breast cancer risk in Caucasian women. Anticancer Res 30:217–220.
  • Plochmann K, Korte G, Koutsilieri E, et al. (2007). Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch Biochem Biophys 460:1–9.
  • Qin X, Peng Q, Qin A, et al. (2012). Association of COMT Val158Met polymorphism and breast cancer risk: An updated meta-analysis. Diagn Pathol 7:136.
  • Rebbeck TR, Troxel AB, Shatalova EG, et al. (2007). Lack of effect modification between estrogen metabolism genotypes and combined hormone replacement therapy in postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev 16:1318–1320.
  • Reding KW, Chen C, Lowe K, et al. (2012). Estrogen-related genes and their contribution to racial differences in breast cancer risk. Cancer Causes Control 23:671–681.
  • Reding KW, Weiss NS, Chen C, et al. (2009). Genetic polymorphisms in the catechol estrogen metabolism pathway and breast cancer risk. Cancer Epidemiol. Biomarkers Prev 18:1461–1467.
  • Rudolph A, Sainz J, Hein R, et al. (2011). Modification of menopausal hormone therapy-associated colorectal cancer risk by polymorphisms in sex steroid signaling, metabolism and transport related genes. Endocr Relat Cancer 18:371–384.
  • Rusak G, Gutzeit HO, Müller JL. (2005). Structurally related flavonoids with antioxidative properties differentially affect cell cycle progression and apoptosis of human acute leukemia cells. Nutr Res 25:141–153.
  • Rutherford K, Alphandery E, McMillan A, et al. (2008). The V108M mutation decreases the structural stability of catechol O-methyltransferase. Biochim Biophys Acta 1784:1098–1105.
  • Rutherford L, Bennion BJ, Parson WW, Daggett V. (2006). The 108M polymorph of human catechol O-methyltransferase is prone to deformation at physiological temperatures. Biochemistry 45:2178–2188.
  • Sainz J, Rudolph A, Hein R, et al. (2011). Association of genetic polymorphisms in ESR2, HSD17B1, ABCB1, and SHBG genes with colorectal cancer risk. Endocr Relat Cancer 18:265–276.
  • Sak K. (2014a). Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev 8:122–146.
  • Sak K. (2014b). Site-specific anticancer effects of dietary flavonoid quercetin. Nutr Cancer 66:177–193.
  • Sangrajrang S, Sato Y, Sakamoto H, et al. (2009). Genetic polymorphisms of estrogen metabolizing enzyme and breast cancer risk in Thai women. Int J Cancer 125:837–843.
  • Sazci A, Ergul E, Utkan NZ, et al. (2004). Catechol-O-methyltransferase Val 108/158 Met polymorphism in premenopausal breast cancer patients. Toxicology 204:197–202.
  • Sellers TA, Schildkraut JM, Pankratz VS, et al. (2005). Estrogen bioactivation, genetic polymorphisms, and ovarian cancer. Cancer Epidemiol Biomarkers Prev 14:2536–2543.
  • Shi ZH, Li NG, Tang YP, et al. (2014). Biological evaluation and SAR analysis of O-methylated analogs of quercetin as inhibitors of cancer cell proliferation. Drug Dev Res 75:455–462.
  • Shrubsole MJ, Lu W, Chen Z, et al. (2009). Drinking green tea modestly reduces breast cancer risk. J Nutr 139:310–316.
  • Skibola CF, Bracci PM, Paynter RA, et al. (2005). Polymorphisms and haplotypes in the cytochrome P450 17A1, prolactin, and catechol-O-methyltransferase genes and non-Hodgkin lymphoma risk. Cancer Epidemiol Biomarkers Prev 14:2391–2401.
  • Suzuki M, Kurosaki T, Arai T, et al. (2007). The Val158Met polymorphism of the catechol-O-methyltransferase gene is not associated with the risk of sporadic or latent prostate cancer in Japanese men. Int J Urol 14:800–804.
  • Suzuki K, Nakazato H, Matsui H, et al. (2003). Genetic polymorphisms of estrogen receptor alpha, CYP18, catechol-O-methyltransferase are associated with familial prostate carcinoma risk in a Japanese population. Cancer 98:1411–1416.
  • Syamala VS, Syamala V, Sheeja VR, et al. (2010). Possible risk modification by polymorphisms of estrogen metabolizing genes in familial breast cancer susceptibility in an Indian population. Cancer Invest 28:304–311.
  • Tan X, Chen M. (2014). Association between catechol-O-methyltransferase rs4680 (G&A) polymorphism and lung cancer risk. Diagn Pathol 9:192.
  • Tanagornmeatar K, Chaotham C, Sritularak B, et al. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from Dendrobium ellipsophyllum. Anticancer Res 34:6573–6579.
  • Tanaka Y, Hirata H, Chen Z, et al. (2007). Polymorphisms of catechol-O-methyltransferase in men with renal cell cancer. Cancer Epidemiol Biomarkers Prev 16:92–97.
  • Tanaka Y, Sasaki M, Shiina H, et al. (2006). Catechol-O-methyltransferase gene polymorphisms in benign prostatic hyperplasia and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15:238–244.
  • Tao MH, Cai Q, Xu WH, et al. (2006). Cytochrome P450 1B1 and catechol-O-methyltransferase genetic polymorphisms and endometrial cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 15:2570–2573.
  • Teng Y, He C, Zuo X, Li X. (2013). Catechol-O-methyltransferase and cytochrome P-450 1B1 polymorphisms and endometrial cancer risk: A meta-analysis. Int J Gynecol Cancer 23:422–430.
  • Thompson PA, Shields PG, Freudenheim JL, et al. (1998). Genetic polymorphisms in catechol-O-methyltransferase, menopausal status, and breast cancer risk. Cancer Res 58:2107.
  • Tian C, Liu L, Yang X, et al. (2014). The Val158Met polymorphism in the COMT gene is associated with increased cancer risks in Chinese population. Tumour Biol 35:3003–3008.
  • Wan GX, Cao YW, Li WQ, et al. (2014). The catechol-O-methyltransferase Val158Met polymorphism contributes to the risk of breast cancer in the Chinese population: An updated meta-analysis. J Breast Cancer 17:149–156.
  • Wang P, Aronson WJ, Huang M, et al. (2010). Green tea polyphenols and metabolites in prostatectomy tissue: implications for cancer prevention. Cancer Prev Res (Phila) 3:985–993.
  • Wang P, Heber D, Henning SM. (2012a). Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct 3:635–642.
  • Wang P, Heber D, Henning SM. (2012b). Quercetin increased the antiproliferative activity of green tea polyphenol (-)-epigallocatechin gallate in prostate cancer cells. Nutr Cancer 64:580–587.
  • Wedren S, Rudqvist TR, Granath F, et al. (2003). Catechol-O-methyltransferase gene polymorphism and post-menopausal breast cancer risk. Carcinogenesis 24:681–687.
  • Weinert CH, Wiese S, Rawel HM, et al. (2012). Methylation of catechins and procyanidins by rat and human catechol-O-methyltransferase: metabolite profiling and molecular modeling studies. Drug Metab Dispos 40:353–359.
  • Wen W, Cai Q, Shu XO, et al. (2005). Cytochrome P450 1B1 and catechol-O-methyltransferase genetic polymorphisms and breast cancer risk in Chinese women: results from the shanghai breast cancer study and a meta-analysis. Cancer Epidemiol Biomarkers Prev 14:329–335.
  • Wolpert BJ, Amr S, Saleh DA, et al. (2012). Associations differ by sex for catechol-O-methyltransferase genotypes and bladder cancer risk in South Egypt. Urol Oncol 30:841–847.
  • Wu AH, Tseng CC, Van Den Berg D, Yu MC. (2003). Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res 63:7526–7529.
  • Xiao L, Tong M, Jin Y, et al. (2013). The l58Val/Met polymorphism of catechol-O-methyl transferase gene and prostate cancer risk: a meta-analysis. Mol Biol Rep 40:1835–1841.
  • Xie YY, Yuan D, Yang JY, et al. (2009). Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cells. J Asian Nat Prod Res 11:771–778.
  • Yadav S, Singhal NK, Singh V, et al. (2009). Association of single nucleotide polymorphisms in CYP1B1 and COMT genes with breast cancer susceptibility in Indian women. Dis Markers 27:203–210.
  • Yager JD. (2012). Catechol-O-methyltransferase: characteristics, polymorphisms and role in breast cancer. Drug Discov Today Dis Mech 9:e41–e46.
  • Yim DS, Parkb SK, Yoo KY, et al. (2001). Relationship between the Val158Met polymorphism of catechol O-methyl transferase and breast cancer. Pharmacogenetics 11:279–286.
  • Zhang H, Zhang Z, Wu J, et al. (2013a). Lack of association between COMT Val158Met polymorphism and prostate cancer susceptibility. Urol Int 91:213–219.
  • Zhang Y, Hua S, Zhang A, et al. (2013b). Association between polymorphisms in COMT, PLCH1, and CYP17A1, and non-small-cell lung cancer risk in Chinese nonsmokers. Clin Lung Cancer 14:45–49.
  • Zhou Q, Wang Y, Chen A, et al. (2015). Association between the COMT Val158Met polymorphism and risk of cancer: Evidence from 99 case-control studies. Onco Targets Ther 8:2791–2803.
  • Zhu BT. (2002). Catechol-O-methyltransferase (COMT)-mediated methylation metabolism of endogenous bioactive catechols and modulation by endobiotics and xenobiotics: importance in pathophysiology and pathogenesis. Curr Drug Metab 3:321–349.
  • Zhu BT, Liehr JG. (1994). Quercetin increases the severity of estradiol-induced tumorigenesis in hamster kidney. Toxicol Appl Pharmacol 125:149–158.
  • Zhu BT, Liehr JG. (1996). Inhibition of catechol O-methyltransferase-catalyzed O-methylation of 2- and 4-hydroxyestradiol by quercetin. Possible role in estradiol-induced tumorigenesis. J Biol Chem 271:1357–1363.
  • Zhu BT, Ezell EL, Liehr JG. (1994). Catechol-O-methyltransferase-catalyzed rapid O-methylation of mutagenic flavonoids. Metabolic inactivation as a possible reason for their lack of carcinogenicity in vivo. J Biol Chem 269:292–299.
  • Zhu BT, Patel UK, Cai MX, Conney AH. (2000). O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase. Drug Metab Dispos 28:1024–1030.
  • Zhu BT, Patel UK, Cai MX, et al. (2001). Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 31:879–890.
  • Zhu BT, Shim JY, Nagai M, Bai HW. (2008). Molecular modeling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (-)-epigallocatechin-3-O-gallate. Xenobiotica 38:130–146.
  • Zhu BT, Wu KY, Wang P, et al. (2010). O-methylation of catechol estrogens by human placental catechol-o-methyltransferase: Interindividual differences in sensitivity to heat inactivation and to inhibition by dietary polyphenols. Drug Metab Dispos 38:1892–1899.
  • Zienolddiny S, Campa S, Lind H, et al. (2008). A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis 29:1164–1169.
  • Zou LW, Xu XJ, Liu T, et al. (2013). No association between COMT Val158Met polymorphism and prostate cancer risk: A meta-analysis. Genet Test Mol Biomarkers 17:78–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.