670
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Drug metabolism and liver disease: a drug–gene–environment interaction

&
Pages 35-55 | Received 28 Jul 2016, Accepted 05 Dec 2016, Published online: 23 Jan 2017

References

  • Abdallah H, Jerling M. (2005). Effect of hepatic impairment on the multiple-dose pharmacokinetics of ranolazine sustained-release tablets. J Clin Pharmacol 45:802–809.
  • Aboel DA, El-Hag D, Moutamed GM, et al. (2016). Pharmacokinetic variations in cancer patients with liver dysfunction: applications and challenges of pharmacometabolomics. Cancer Chemother Pharmacol 78:465–489.
  • Acuna G, Foernzler D, Leong D, et al. (2002). Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J 2:327–334.
  • Adedoyin A, Arns PA, Richards WO, et al. (1998). Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther 64:8–17.
  • Adedoyin A, Branch RA. 1996, Pharmacokinetics. In: Boyer ZD, ed. Hepatology: s textbook of liver disease, 3rd ed. Philadelphia: WB Saunders, 307–317.
  • Aithal GP. (2004). Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin Drug Saf 3:519–523.
  • Aithal GP. (2015). Pharmacogenetic testing in idiosyncratic drug-induced liver injury: current role in clinical practice. Liver Int 35:1801–1808.
  • Aithal GP, Day CP, Leathart JB, Daly AK. (2000). Relationship of polymorphism in CYP2C9 to genetic susceptibility to diclofenac-induced hepatitis. Pharmacogenetics 10:511–518.
  • Aitken AE, Lee CM, Morgan ET. (2008). Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic Biol Med 44:1161–1168.
  • Aitken AE, Morgan ET. (2007). Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos 35:1687–1693.
  • Albarmawi A, Czock D, Gauss A, et al. (2014). CYP3A activity in severe liver cirrhosis correlates with Child–Pugh and model for end-stage liver disease (MELD) scores. Br J Clin 77:160–169.
  • Amarapurkar DN. (2011). Prescribing medications in patients with decompensated liver cirrhosis. Int J Hepatol 2011:519526.
  • An HR, Wu XQ, Wang ZY, et al. (2012). NAT2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. Clin Exp Pharmacol Physiol 39:535–543.
  • Anderson GD, Hakimian S. (2014). Pharmacokinetic of antiepileptic drugs in patients with hepatic or renal impairment. Clin Pharmacokinet 53:29–49.
  • Andrade RJ, Ortega-Alonso A, Lucena MI. (2016). Drug-Induced Liver Injury Clinical Consortia: a global research response for a worldwide health challenge. Expert Opin Drug Metab Toxicol 12:589–593.
  • Antoine DJ, Williams DP, Park BK. (2008). Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opin Drug Metab Toxicol 4:1415–1427.
  • Ariyoshi N, Iga Y, Hirata K, et al. (2010). Enhanced susceptibility of HLA-mediated ticlopidine-induced idiosyncratic hepatotoxicity by CYP2B6 polymorphism in Japanese. Drug Metab Pharmacokinet 25:298–306.
  • Arrese M, Eguchi A, Feldstein AE. (2015). Circulating microRNAs: emerging biomarkers of liver disease. Semin Liver Dis 35:43–54.
  • Asselah T, Bieche I, Laurendeau I, et al. (2005). Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology 129:2064–2075.
  • Baker SD, van Schaik RH, Rivory LP, et al. (2004). Factors affecting cytochrome P-450 3A activity in cancer patients. Clin Cancer Res 10:8341–8350.
  • Barreiro P, Rodriguez-Novoa S, Labarga P, et al. (2007). Influence of liver fibrosis stage on plasma levels of antiretroviral drugs in HIV-infected patients with chronic hepatitis C. J Infect Dis 195:973–979.
  • Bieche I, Asselah T, Laurendeau I, et al. (2005). Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 332:130–144.
  • Bose PD, Sarma MP, Medhi S, et al. (2011). Role of polymorphic N-acetyl transferase2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. J Gastroenterol Hepatol 26:312–318.
  • Bozok CV, Erer OF, Kosova B, et al. (2008). Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. Tuberk Toraks 56:81–86.
  • Branch RA. (1982). Drugs as indicators of hepatic function. Hepatology 2:97–105.
  • Branch RA. (1998). Drugs in liver disease. Clin Pharmacol Ther 64:462–465.
  • Branch RA, Cotham R, Johnson R, et al. (1983). Periportal localization of lorazepam glucuronidation in the isolated perfused rat liver. J Lab Clin Med 102:805–812.
  • Branch RA, James JA, Read AE. (1976). The clearance of antipyrine and indocyanine green in normal subjects and in patients with chronic liver disease. Clin Pharmacol Ther 20:81–89.
  • Branch RA, Sabra R, Bernardo J. (1996), The threshold hypothesis of sodium retention in the presence of liver disease provides a surrogate marker for the onset of ascites. In: Reichen J, Poupon RE, eds. Surrogate markers to assess efficacy of treatment in chronic liver diseases, New York: Kluwer Academic, 34–45.
  • Brockmoller J, Thomsen T, Wittstock M, et al. (2005). Pharmacokinetics of levetiracetam in patients with moderate to severe liver cirrhosis (Child–Pugh classes A, B, and C): characterization by dynamic liver function tests. Clin Pharmacol Ther 77:529–541.
  • Brucher BL, Jamall IS. (2014). Cell–cell communication in the tumor microenvironment, carcinogenesis, and anticancer treatment. Cell Physiol Biochem 34:213–243.
  • Buechler C, Weiss TS. (2011). Does hepatic steatosis affect drug metabolizing enzymes in the liver?. Curr Drug Metab 12:24–34.
  • Caesar J, Shaldon S, Chiandussi L, et al. (1961). The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 21:43–57.
  • Carcillo JA, Adedoyin A, Burckart GJ, et al. (2003). Coordinated intrahepatic and extrahepatic regulation of cytochrome p4502D6 in healthy subjects and in patients after liver transplantation. Clin Pharmacol Ther 73:456–467.
  • Carcillo JA, Parise RA, Adedoyin A, et al. (1996). CYP2D6 mRNA expression in circulating peripheral blood mononuclear cells correlates with in vivo debrisoquine hydroxylase activity in extensive metabolizers. Res Commun Mol Pathol Pharmacol 91:149–159.
  • Carr DF, Alfirevic A, Tugwood JD, et al. (2007). Molecular and genetic association of interleukin-6 in tacrine-induced hepatotoxicity. Pharmacogenet Genomics 17:961–972.
  • Chalasani N, Bjornsson E. (2010). Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology 138:2246–2259.
  • Chalasani N, Bonkovsky HL, Fontana R, et al. (2015). Features and outcomes of 899 patients with drug-induced liver injury: The DILIN Prospective Study. Gastroenterology 148:1340–1352.
  • Chalasani N, Gorski JC, Asghar MS, et al. (2003). Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 37:544–550.
  • Chalon SA, Desager JP, Desante KA, et al. (2003). Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 73:178–191.
  • Chang JC, Liu EH, Lee CN, et al. (2012). UGT1A1 polymorphisms associated with risk of induced liver disorders by anti-tuberculosis medications. Int J Tuberc Lung Dis 16:376–378.
  • Chatterjee S, Lyle N, Mandal A, Kundu S. (2010). GSTT1 and GSTM1 gene deletions are not associated with hepatotoxicity caused by antitubercular drugs. J Clin Pharm Ther 35:465–470.
  • Chen M, Borlak J, Tong W. (2013). High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology 58:388–396.
  • Cho HJ, Koh WJ, Ryu YJ, et al. (2007). Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinburgh) 87:551–556.
  • Chopra S, Pockros PJ. (2016). Overview of the management of chronic hepatitis C virus infection. Bisceglie AM UpToDate. Wolters Kluwer.
  • Christensen E, Neuberger J, Crowe J, et al. (1985). Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology 89:1084–1091.
  • Christensen E, Schlichting P, Fauerholdt L, et al. (1984). Prognostic value of Child–Turcotte criteria in medically treated cirrhosis. Hepatology 4:430–435.
  • Conn HO. (1981). A peek at the Child–Turcotte classification. Hepatology 1:673–676.
  • Corsini A, Bortolini M. (2013). Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol 53:463–474.
  • Coverdale SA, Samarasinghe DA, Lin R, et al. (2003). Changes in antipyrine clearance and platelet count, but not conventional liver tests, correlate with fibrotic change in chronic hepatitis C: value for predicting fibrotic progression. Am J Gastroenterol 98:1384–1390.
  • Crotty B, Watson KJ, Desmond PV, et al. (1989). Hepatic extraction of morphine is impaired in cirrhosis. Eur J Clin Pharmacol 36:501–506.
  • D’Amico G, Morabito A, Pagliaro L, Marubini E. (1986). Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig Dis Sci 31:468–475.
  • Daly AK, Aithal GP, Leathart JB, et al. (2007). Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132:272–281.
  • Daly AK, Day CP. (2012). Genetic association studies in drug-induced liver injury. Drug Metab Rev 44:116–126.
  • Daly AK, Donaldson PT, Bhatnagar P, et al. (2009). HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 41:816–819.
  • Day CP, James OF. (1998). Steatohepatitis: a tale of two “hits”? Gastroenterology 114:842–845.
  • Delaporte E, Renton KW. (1997). Cytochrome P4501A1 and cytochrome P4501A2 are downregulated at both transcriptional and post-transcriptional levels by conditions resulting in interferon-alpha/beta induction. Life Sci 60:787–796.
  • Delco F, Tchambaz L, Schlienger R, et al. (2005). Dose adjustment in patients with liver disease. Drug Saf 28:529–545.
  • Dickson ER, Grambsch PM, Fleming TR, et al. (1989). Prognosis in primary biliary cirrhosis: model for decision making. Hepatology 10:1–7.
  • Dwyer JP, Jayasekera C, Nicoll A. (2014). Analgesia for the cirrhotic patient: a literature review and recommendations. J Gastroenterol Hepatol 29:1356–1360.
  • Everson GT, Shiffman ML, Hoefs JC, et al. (2012). Quantitative liver function tests improve the prediction of clinical outcomes in chronic hepatitis C: results from the Hepatitis C Antiviral Long-term Treatment Against Cirrhosis Trial. Hepatology 55:1019–1029.
  • Farrant JM, Hayllar KM, Wilkinson ML, et al. (1991). Natural history and prognostic variables in primary sclerosing cholangitis. Gastroenterology 100:1710–1717.
  • Fisher CD, Lickteig AJ, Augustine LM, et al. (2009). Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 37:2087–2094.
  • Franz CC, Hildbrand C, Born C, et al. (2013). Dose adjustment in patients with liver cirrhosis: impact on adverse drug reactions and hospitalizations. Eur.J Clin Pharmacol 69:1565–1573.
  • Frye RF, Matzke GR, Adedoyin A, Schade RR, Branch RA. (1995). Effect of liver disease on CYP activity assessed utilizing a cocktail approach. Pharmaceut Res 12:S380.
  • Frye RF, Matzke GR, Adedoyin A, et al. (1997). Validation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 62:365–376.
  • Frye RF, Zgheib NK, Matzke GR, et al. (2006). Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin Pharmacol Ther 80:235–245.
  • Fukudo M, Yano I, Yoshimura A, et al. (2008). Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genomics 18:413–423.
  • Gao J, Zhou J, He XP, et al. (2016). Changes in cytochrome P450s-mediated drug clearance in patients with hepatocellular carcinoma in vitro and in vivo: a bottom-up approach. Oncotarget 7:28612–28623.
  • George J, Murray M, Byth K, Farrell GC. (1995). Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21:120–128.
  • Giannini E, Fasoli A, Chiarbonello B, et al. (2002). 13C-aminopyrine breath test to evaluate severity of disease in patients with chronic hepatitis C virus infection. Aliment Pharmacol Ther 16:717–725.
  • Gines P, Quintero E, Arroyo V, et al. (1987). Compensated cirrhosis: natural history and prognostic factors. Hepatology 7:122–128.
  • Gomez A, Ingelman-Sundberg M. (2009). Pharmacoepigenetics: its role in interindividual differences in drug response 1. Clin Pharmacol Ther 85:426–430.
  • Gorski JC, Chalasani N, Patel N, Galinsky RE, Craven R, Hall SD. (2001). Hepatic and intestinal CYP3A activity in cirrhotics with transjugular intrahepatic portosystemic shunts (TIPS). Clin Pharmacol Ther 69:37.
  • Gorski JC, Jones DR, Haehner-Daniels BD, et al. (1998). The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 64:133–143.
  • Goudie BM, Burt AD, Macfarlane GJ, et al. (1989). Risk factors and prognosis in primary biliary cirrhosis. Am J Gastroenterol 84:713–716.
  • Graff J, Harder S. (2013). Anticoagulant therapy with the oral direct factor Xa inhibitors rivaroxaban, apixaban and edoxaban and the thrombin inhibitor dabigatran etexilate in patients with hepatic impairment. Clin Pharmacokinet 52:243–254.
  • Guengerich FP, Turvy CG. (1991). Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther 256:1189–1194.
  • Gunawan BK, Kaplowitz N. (2007). Mechanisms of drug-induced liver disease. Clin Liver Dis 11:459–475.
  • Gupta NK, Lewis JH. (2008). Review article: The use of potentially hepatotoxic drugs in patients with liver disease. Aliment Pharmacol Ther 28:1021–1041.
  • Hanada K, Nakai K, Tanaka H, et al. (2012). Effect of nuclear receptor downregulation on hepatic expression of cytochrome P450 and transporters in chronic hepatitis C in association with fibrosis development. Drug Metab Pharmacokinet 27:301–306.
  • Hasselstrom J, Eriksson S, Persson A, et al. (1990). The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 29:289–297.
  • Hatorp V, Walther KH, Christensen MS, Haug-Pihale G. (2000). Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol 40:142–152.
  • Herold C, Heinz R, Niedobitek G, et al. (2001). Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. Liver 21:260–265.
  • Hintermann E, Holdener M, Bayer M, et al. (2011). Epitope spreading of the anti-CYP2D6 antibody response in patients with autoimmune hepatitis and in the CYP2D6 mouse model. J Autoimmun 37:242–253.
  • Hoyumpa AM, Schenker S. (1991). Is glucuronidation truly preserved in patients with liver disease? Hepatology 13:786–795
  • Huang YS, Chern HD, Su WJ, et al. (2002). Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35:883–889.
  • Huang YS, Chern HD, Su WJ, et al. (2003). Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37:924–930.
  • Huang YS, Su WJ, Huang YH, et al. (2007). Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol 47:128–134.
  • Infante-Rivard C, Esnaola S, Villeneuve JP. (1987). Clinical and statistical validity of conventional prognostic factors in predicting short-term survival among cirrhotics. Hepatology 7:660–664.
  • Iqbal S, Vickers C, Elias E. (1990). Drug metabolism in end-stage liver disease. In vitro activities of some phase I and phase II enzymes. J Hepatol 11:37–42.
  • Ivanov M, Barragan I, Ingelman-Sundberg M. (2014). Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 35:384–396.
  • Ivanov M, Kacevska M, Ingelman-Sundberg M. (2012). Epigenomics and interindividual differences in drug response. Clin Pharmacol Ther 92:727–736.
  • Jacqz E, Ward S, Johnson R, et al. (1986). Extrahepatic glucuronidation of morphine in the dog. Drug Metab Dispos 14:627–630.
  • Johnson TN, Boussery K, Rowland-Yeo K, et al. (2010). A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 49:189–206.
  • Juhl RP, Van Thiel DH, Dittert LW, et al. (1983). Ibuprofen and sulindac kinetics in alcoholic liver disease. Clin Pharmacol Ther 34:104–109.
  • Kim SH, Kim SH, Bahn JW, et al. (2009). Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. Pharmacogenomics 10:1767–1779.
  • Kindmark A, Jawaid A, Harbron CG, et al. (2008). Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8:186–195.
  • Kleinbloesem CH, van HJ, Wilson JP, et al. (1986). Nifedipine: kinetics and hemodynamic effects in patients with liver cirrhosis after intravenous and oral administration. Clin Pharmacol Ther 40:21–28.
  • Komurasaki R, Imaoka S, Tada N, et al. (2010). LKM-1 sera from autoimmune hepatitis patients that recognize ERp57, carboxylesterase 1 and CYP2D6. Drug Metab Pharmacokinet 25:84–92.
  • Kurose I, Higuchi H, Miura S, et al. (1997). Oxidative stress-mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology 25:368–378.
  • Lankisch TO, Behrens G, Ehmer U, et al. (2009). Gilbert’s syndrome and hyperbilirubinemia in protease inhibitor therapy – an extended haplotype of genetic variants increases risk in indinavir treatment. J Hepatol 50:1010–1018.
  • Lankisch TO, Moebius U, Wehmeier M, et al. (2006). Gilbert’s disease and atazanavir: from phenotype to UDP-glucuronosyltransferase haplotype. Hepatology 44:1324–1332.
  • Larson AM. Drugs and the liver: metabolism and mechanisms of injury. Lindor KD. UpToDate. 2016. Wolkers Kluwer.
  • Lee SJ, Lee YJ, Park KK. (2016). The pathogenesis of drug-induced liver injury. Expert Rev Gastroenterol Hepatol 10:1175–1185.
  • Lee SW, Chung LS, Huang HH, et al. (2010). NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis 14:622–626.
  • Leiro V, Fernandez-Villar A, Valverde D, et al. (2008). Influence of glutathione S-transferase M1 and T1 homozygous null mutations on the risk of antituberculosis drug-induced hepatotoxicity in a Caucasian population. Liver Int 28:835–839.
  • Lewis JH, Stine JG. (2013). Review article: prescribing medications in patients with cirrhosis – a practical guide. Aliment Pharmacol Ther 37:1132–1156.
  • Liao W, Mao Y, Ge P, et al. (2015). Value of quantitative and qualitative analyses of circulating cell-free DNA as diagnostic tools for hepatocellular carcinoma: a meta-analysis. Medicine (Baltimore) 94:e722.
  • Liu S, Frye RF, Branch RA, et al. (2005). Effect of age and postoperative time on cytochrome p450 enzyme activity following liver transplantation. J Clin Pharmacol 45:666–673.
  • Lown K, Kolars J, Turgeon K, et al. (1992). The erythromycin breath test selectively measures P450IIIA in patients with severe liver disease. Clin Pharmacol Ther 51:229–238.
  • Lucas D, Berthou F, Dreano Y, et al. (1993). Comparison of levels of cytochromes P-450, CYP1A2, CYP2E1, and their related monooxygenase activities in human surgical liver samples. Alcohol Clin Exp Res 17:900–905.
  • Lucena MI, Andrade RJ, Martinez C, et al. (2008). Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology 48:588–596.
  • Lucena MI, Molokhia M, Shen Y, et al. (2011). Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141:338–347.
  • Maddrey WC, Boitnott JK, Bedine MS, et al. (1978). Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75:193–199.
  • Marcellin P, de BF, Garret C, et al. (2001). Influence of cirrhosis on lamotrigine pharmacokinetics. Br J Clin Pharmacol 51:410–414.
  • Matsumoto T, Ohno M, Azuma J. (2014). Future of pharmacogenetics-based therapy for tuberculosis. Pharmacogenomics 15:601–607.
  • Mazoit JX, Sandouk P, Zetlaoui P, Scherrmann JM. (1987). Pharmacokinetics of unchanged morphine in normal and cirrhotic subjects. Anesth Analg 66:293–298.
  • Merrell MD, Cherrington NJ. (2011). Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 43:317–334.
  • Mitchell MC, Hall SD, Schenker S, Branch RA. (1989). Impaired hepatic elimination of paranitrophenol and its metabolites in the rat following chronic ethanol pretreatment. Alcohol Clin Exp Res 13:264–270.
  • Morgan DJ, McLean AJ. (1991). Therapeutic implications of impaired hepatic oxygen diffusion in chronic liver disease. Hepatology 14:1280–1282.
  • Morgan ET. (2001). Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 29:207–212.
  • Morgan ET, Li-Masters T, Cheng PY. (2002). Mechanisms of cytochrome P450 regulation by inflammatory mediators. Toxicology 181–182:207–210.
  • Morimoto M, Hagbjork AL, Wan YJ, et al. (1995). Modulation of experimental alcohol-induced liver disease by cytochrome P450 2E1 inhibitors. Hepatology 21:1610–1617.
  • Murphy SK, Yang H, Moylan CA, et al. (2013). Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology 145:1076–1087.
  • Nakai K, Tanaka H, Hanada K, et al. (2008). Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos 36:1786–1793.
  • Nelson E. (1964). Rate of metabolism of tolbutamide in tests subjects with liver disease or with impaired renal function. Am J Med Sci 248:657–659.
  • Nozawa T, Sugiura S, Nakajima M, et al. (2004). Involvement of organic anion transporting polypeptides in the transport of troglitazone sulfate: implications for understanding troglitazone hepatotoxicity. Drug Metab Dispos 32:291–294.
  • Ohnishi A, Murakami S, Akizuki S, et al. (2005). In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. J Clin Pharmacol 45:1221–1229.
  • Ohno M, Yamaguchi I, Yamamoto I, et al. (2000). Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 4:256–261.
  • Onofrei MD, Butler KL, Fuke DC, Miller HB. (2008). Safety of statin therapy in patients with preexisting liver disease. Pharmacotherapy 28:522–529.
  • Orellana M, Rodrigo R, Varela N, et al. (2006). Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients. Hepatol Res 34:57–63.
  • Orrego H, Israel Y, Blake JE, Medline A. (1983). Assessment of prognostic factors in alcoholic liver disease: toward a global quantitative expression of severity. Hepatology 3:896–905.
  • Pachkoria K, Lucena MI, Ruiz-Cabello F, et al. (2007). Genetic polymorphisms of CYP2C9 and CYP2C19 are not related to drug-induced idiosyncratic liver injury (DILI). Br J Pharmacol 150:808–815.
  • Patwardhan RV, Johnson RF, Hoyumpa A Jr, et al. (1981). Normal metabolism of morphine in cirrhosis. Gastroenterology 81:1006–1011.
  • Pearce RE, Lu W, Wang Y, et al. (2008). Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 36:1637–1649.
  • Pique JM, Feu F, de PG, et al. (2002). Pharmacokinetics of omeprazole given by continuous intravenous infusion to patients with varying degrees of hepatic dysfunction. Clin Pharmacokinet 41:999–1004.
  • Pogribny IP, Beland FA. (2013). Role of microRNAs in the regulation of drug metabolism and disposition genes in diabetes and liver disease. Expert Opin Drug Metab Toxicol 9:713–724.
  • Possuelo LG, Castelan JA, de Brito TC, et al. (2008). Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur J Clin Pharmacol 64:673–681.
  • Poynard T, Zourabichvili O, Hilpert G, et al. (1984). Prognostic value of total serum bilirubin/gamma-glutamyl transpeptidase ratio in cirrhotic patients. Hepatology 4:324–327.
  • Raucy JL, Lasker JM, Lieber CS, Black M. (1989). Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch Biochem Biophys 271:270–283.
  • Reichen J. (1999). The role of the sinusoidal endothelium in liver function. News Physiol Sci 14:117–121.
  • Rieger JK, Klein K, Winter S, Zanger UM. (2013). Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 41:1752–1762.
  • Robin MA, Le RM, Descatoire V, Pessayre D. (1997). Plasma membrane cytochromes P450 as neoantigens and autoimmune targets in drug-induced hepatitis. J Hepatol 26:23–30.
  • Rodriguez-Sainz C, Valor L, Hernandez DC, et al. (2013). Flow cytometry analysis with a new FITC-conjugated monoclonal antibody-3E12 for HLA-B*57:01 rapid screening in prevention of abacavir hypersensitivity in HIV-1-infected patients. HIV Clin Trials 14:160–164.
  • Roll J, Boyer JL, Barry D, Klatskin G. (1983). The prognostic importance of clinical and histologic features in asymptomatic and symptomatic primary biliary cirrhosis. N Engl J Med 308:1–7.
  • Roy B, Chowdhury A, Kundu S, et al. (2001). Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J Gastroenterol Hepatol 16:1033–1037.
  • Rydning A, Schrumpf E, Abdelnoor M, et al. (1990). Factors of prognostic importance in primary biliary cirrhosis. Scand J Gastroenterol 25:119–126.
  • Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. (2001). Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 120:1183–1192.
  • Sarges P, Steinberg JM, Lewis JH. (2016). Drug-induced liver injury: highlights from a review of the 2015 literature. Drug Saf 39:801–821.
  • Saukkonen JJ, Cohn DL, Jasmer RM, et al. (2006). An official ATS statement: hepatotoxicity of antituberculosis therapy. Am J Respir Crit Care Med 174:935–952.
  • Schvarcz R, Rudbeck G, Soderdahl G, Stahle L. (2000). Interaction between nelfinavir and tacrolimus after orthoptic liver transplantation in a patient coinfected with HIV and hepatitis C virus (HCV). Transplantation 69:2194–2195.
  • Shah RR, Smith RL. (2015). Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos 43:400–410.
  • Shi S, Li Y. (2014). Interplay of drug-metabolizing enzymes and transporters in drug absorption and disposition. Curr Drug Metab 15:915–941.
  • Singer JB, Lewitzky S, Leroy E, et al. (2010). A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat Genet 42:711–714.
  • Sjovall H, Bjornsson E, Holmberg J, et al. (2002). Pharmacokinetic study of esomeprazole in patients with hepatic impairment. Eur. J Gastroenterol. Hepatol 14:491–496.
  • Slaviero KA, Clarke SJ, Rivory LP. (2003). Inflammatory response: an unrecognised source of variability in the pharmacokinetics and pharmacodynamics of cancer chemotherapy. Lancet Oncol 4:224–232.
  • Sonne J, Andreasen PB, Loft S, et al. (1990). Glucuronidation of oxazepam is not spared in patients with hepatic encephalopathy. Hepatology 11:951–956.
  • Sotaniemi EA, Rautio A, Backstrom M, et al. (1995). CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and coumarin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol 39:71–76.
  • Spraggs CF, Budde LR, Briley LP, et al. (2011). HLA-DQA1*02:01 is a major risk factor for lapatinib-induced hepatotoxicity in women with advanced breast cancer. J Clin Oncol 29:667–673.
  • Sulkowski MS, Thomas DL, Chaisson RE, Moore RD. (2000). Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA 283:74–80.
  • Tanaka E, Inomata S, Yasuhara H. (2000). The clinical importance of conventional and quantitative liver function tests in liver transplantation. J Clin Pharm Ther 25:411–419.
  • Tang SW, Lv XZ, Zhang Y, et al. (2012). CYP2E1, GSTM1 and GSTT1 genetic polymorphisms and susceptibility to antituberculosis drug-induced hepatotoxicity: a nested case–control study. J Clin Pharm Ther 37:588–593.
  • Teixeira RL, Morato RG, Cabello PH, et al. (2011). Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 106:716–724.
  • Theise ND. (2015). Liver and gallbladder. In: Kumar V, Abbas AK, Aster JC, eds. Robbins and Cotran pathologic basis of disease, 9th ed. New York: Elsevier, 821–881.
  • Thummel KE, Lin YS. (2014). Sources of interindividual variability. Methods Mol Biol 1113:363–415.
  • Thummel KE, O’Shea D, Paine MF, et al. (1996). Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 59:491–502.
  • Tischer S, Fontana RJ. (2014). Drug-drug interactions with oral anti-HCV agents and idiosyncratic hepatotoxicity in the liver transplant setting. J Hepatol 60:872–884.
  • Tsutsumi M, Matsuda Y, Takada A. (1993). Role of ethanol-inducible cytochrome P-450 2E1 in the development of hepatocellular carcinoma by the chemical carcinogen, N-nitrosodimethylamine. Hepatology 18:1483–1489.
  • Ueda K, Ishitsu T, Seo T, et al. (2007). Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity. Pharmacogenomics 8:435–442.
  • Urban TJ, Goldstein DB, Watkins PB. (2012a). Genetic basis of susceptibility to drug-induced liver injury: what have we learned and where do we go from here? Pharmacogenomics 13:735–738.
  • Urban TJ, Shen Y, Stolz A, et al. (2012b). Limited contribution of common genetic variants to risk for liver injury due to a variety of drugs. Pharmacogenet Genomics 22:784–795.
  • US Food and Drug Administration (USFDA). (2003). Guidance for industry. Pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. Available from: http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072123.pdf
  • Verbeeck RK. (2008). Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 64:1147–1161.
  • Verbeeck RK, Patwardhan RV, Villeneuve JP, et al. (1982). Furosemide disposition in cirrhosis. Clin Pharmacol Ther 31:719–725.
  • Vidali M, Stewart SF, Rolla R, et al. (2003). Genetic and epigenetic factors in autoimmune reactions toward cytochrome P4502E1 in alcoholic liver disease. Hepatology 37:410–419.
  • Villeneuve JP, Infante-Rivard C, Ampelas M, et al. (1986). Prognostic value of the aminopyrine breath test in cirrhotic patients. Hepatology 6:928–931.
  • Villeneuve JP, Pichette V. (2004). Cytochrome P450 and liver diseases. Curr Drug Metab 5:273–282.
  • Vuilleumier N, Rossier MF, Chiappe A, et al. (2006). CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur J Clin Pharmacol 62:423–429.
  • Vuppalanchi R, Liang T, Goswami CP, et al. (2013). Relationship between differential hepatic microRNA expression and decreased hepatic cytochrome P450 3A activity in cirrhosis. PLoS One 8:e74471.
  • Wang PY, Xie SY, Hao Q, et al. (2012a). NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis 16:589–595.
  • Wang T, Yu HT, Wang W, et al. (2010). Genetic polymorphisms of cytochrome P450 and glutathione S-transferase associated with antituberculosis drug-induced hepatotoxicity in Chinese tuberculosis patients. J Int Med Res 38:977–986.
  • Wang XW, Heegaard NH, Orum H. (2012b). MicroRNAs in liver disease. Gastroenterology 142:1431–1443.
  • Watanabe I, Tomita A, Shimizu M, et al. (2003). A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther 73:435–455.
  • Weltman MD, Farrell GC, Hall P, et al. (1998). Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 27:128–133.
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. (2012). Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417.
  • Wiesner RH, Grambsch PM, Dickson ER, et al. (1989). Primary sclerosing cholangitis: natural history, prognostic factors and survival analysis. Hepatology 10:430–436.
  • Williams ML, Bhargava P, Cherrouk I, et al. (2000). A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br J Clin Pharmacol 49:485–488.
  • Wood AJ, Villeneuve JP, Branch RA, et al. (1979). Intact hepatocyte theory of impaired drug metabolism in experimental cirrhosis in the rat. Gastroenterology 76:1358–1362.
  • Yamada S, Tang M, Richardson K, et al. (2009). Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics 10:1433–1445.
  • Yang M, Kim SY, Lee SM, et al. (2003). Biological monitoring of bisphenol a in a Korean population. Arch Environ. Contam Toxicol 44:546–551.
  • Yu K, Geng X, Chen M, et al. (2014). High daily dose and being a substrate of cytochrome P450 enzymes are two important predictors of drug-induced liver injury. Drug Metab Dispos 42:744–750.
  • Yu MW, Gladek-Yarborough A, Chiamprasert S, et al. (1995). Cytochrome P450 2E1 and glutathione S-transferase M1 polymorphisms and susceptibility to hepatocellular carcinoma. Gastroenterology 109:1266–1273.
  • Zanger UM, Schwab M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141.
  • Zgheib NK, Buch S, Steele A, Shaw-Stiffel T, Zacharia L, Romkes M, Branch R. (2007a). Cholestasis does not induce selective regulation in patients with liver disease. Clin Pharmacol Ther 81:S75.
  • Zgheib NK, Buch S, Steele A, Shaw-Stiffel T, Zacharia L, Romkes M, Branch R. (2007b). Chronic liver disease is not inevitably a progressive disease. Clin Pharmacol Ther 81:S75.
  • Zgheib NK, Frye RF, Tracy TS, et al. (2006). Validation of incorporating flurbiprofen into the Pittsburgh cocktail. Clin Pharmacol Ther 80:257–263.
  • Zhou J, Wen Q, Li SF, et al. (2016). Significant change of cytochrome P450s activities in patients with hepatocellular carcinoma. Oncotarget 2016;7:50612–50623.
  • Zhou S, Chan E, Duan W, et al. (2005). Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 37:41–213.
  • Zimmerer J, Tittor W, Degen P. (1982). Anti-rheumatic therapy in patients with liver diseases. Plasma levels of diclofenac and elimination of diclofenac and metabolites in urine of patients with liver disease. Fortschr Med 100:1683–1688.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.