249
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Raman spectroscopy using plasmonic and carbon-based nanoparticles for cancer detection, diagnosis, and treatment guidance. Part 2: Treatment

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Pages 253-283 | Received 04 Jan 2017, Accepted 08 Mar 2017, Published online: 19 Jun 2017

References

  • Agostinis P, Berg K, Cengel KA, et al. (2011). Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281.
  • Aioub M, El-Sayed MA. (2016). A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc 138:1258–1264.
  • Alnaim L. (2007). Therapeutic drug monitoring of cancer chemotherapy. J Oncol Pharm Pract 13:207–221.
  • Amin RM, Hauser C, Kinzler I, et al. (2012). Evaluation of photodynamic treatment using aluminum phthalocyanine tetrasulfonate chloride as a photosensitizer: new approach. Photochem Photobiol Sci 11:1156–1163.
  • Austin LA, Kang B, El-Sayed MA. (2013). A new nanotechnology technique for determining drug efficacy using targeted plasmonically enhanced single cell imaging spectroscopy. J Am Chem Soc 135:4688–4691.
  • Bach DM, Straseski JA, Clarke W. (2010). Therapeutic drug monitoring in cancer chemotherapy. Bioanalysis 2:863–879.
  • Baselga J. (2001). The EGFR as a target for anticancer therapy—focus on cetuximab. Eur J Cancer 37:16–22.
  • Batista De Carvalho AL, Pilling M, Gardner P, et al. (2016). Chemotherapeutic response to cisplatin-like drugs in human breast cancer cells probed by vibrational microspectroscopy. Faraday Discuss 187:273–298.
  • Beck B, Chen YF, Dere W, et al. (2004). Assay operations for SAR support. In: Sittampalam GS, Coussens NP, Brimacombe K, et al., eds. Assay guidance manual. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences.
  • Beqa L, Fan Z, Singh AK, et al. (2011). Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces 3:3316–3324.
  • Bhirde AA, Liu G, Jin A, et al. (2011). Combining portable Raman probes with nanotubes for theranostic applications. Theranostics 1:310–321.
  • Bian X, Song ZL, Qian Y, et al. (2014). Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci Rep 4:6093.
  • Boca-Farcau S, Potara M, Simon T, et al. (2013). Folic acid-conjugated, SERS-labeled silver nanotriangles for multimodal detection and targeted photothermal treatment on human ovarian cancer cells. Mol Pharm 11:391–399.
  • Brautigam K, Bocklitz T, Schmitt M, et al. (2013). Raman spectroscopic imaging for the real-time detection of chemical changes associated with docetaxel exposure. Chemphyschem 14:550–553.
  • Brozek-Pluska B, Jarota A, Jablonska-Gajewicz J, et al. (2012). Distribution of phthalocyanines and raman reporters in human cancerous and noncancerous breast tissue as studied by Raman imaging. Technol Cancer Res Treat 11:317–331.
  • Bucharskaya A, Maslyakova G, Terentyuk G, et al. (2016). Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int J Mol Sci 17:1295.
  • Calixto GM, Bernegossi J, De Freitas LM, et al. (2016). Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 21:342.
  • Calzolari A, Oliviero I, Deaglio S, et al. (2007). Transferrin receptor 2 is frequently expressed in human cancer cell lines. Blood Cells Mol Dis 39:82–91.
  • Carroll PR, Parsons JK, Andriole G, et al. (2016). NCCN Guidelines Insights: Prostate cancer early detection, version 2.2016. J Natl Compr Canc Netw 14:509–519.
  • Chen CY, Sun E, Fan D, et al. (2012). Synthesis and physicochemical properties of metallobacteriochlorins. Inorg Chem 51:9443–9464.
  • Chen YW, Liu TY, Chen PJ, et al. (2016). A high-sensitivity and low-power theranostic nanosystem for cell sers imaging and selectively photothermal therapy using anti-EGFR-conjugated reduced graphene oxide/mesoporous silica/AuNPs nanosheets. Small 12:1458–1468.
  • Chen Z, Yu D, Huang Y, et al. (2014). Tunable SERS-tags-hidden gold nanorattles for theranosis of cancer cells with single laser beam. Sci Rep 4:6709.
  • Chu CK, Tu YC, Hsiao JH, et al. (2016). Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring. Nanotechnology 27:115102.
  • Chung E, Lee J, Yu J, et al. (2014). Use of surface-enhanced Raman scattering to quantify EGFR markers uninhibited by cetuximab antibodies. Biosens Bioelectron 60:358–365.
  • Conde J, Bao C, Cui D, et al. (2014). Antibody–drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics. J Control Release 183:87–93.
  • Dalziel K, Round A, Stein K, et al. (2004). Effectiveness and cost-effectiveness of imatinib for first-line treatment of chronic myeloid leukaemia in chronic phase: A systematic review and economic analysis. Health Technol Assess 8:1–120.
  • Darrigues E, Nima ZA, Majeed W, et al. (2017). Enhanced Raman spectroscopy via plasmonic and carbonaceous nanostructures for the detection, diagnosis, and treatment of cancer part 1: Detection. Drug Metab Rev. [Epub ahead of print]. doi: http://dx.doi.org/10.1080/03602532.2017.1302465.
  • Deng L, Li Q, Yang Y, et al. (2015). “Two-Step” Raman imaging technique to guide chemo-photothermal cancer therapy. Chemistry 21:17274–17281.
  • Dolmans DEJGJ, Fukumura D, Jain RK. (2003). Photodynamic therapy for cancer. Nat Rev Cancer 3:380.
  • Dreaden EC, Alkilany AM, Huang X, et al. (2012). The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779.
  • Dresselhaus M, Dresselhaus G, Jorio A, et al. (2002). Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061.
  • Dresselhaus MS, Jorio A, Hofmann M, et al. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758.
  • Fales AM, Yuan H, Vo-Dinh T. (2011). Silica-coated gold nanostars for combined surface-enhanced Raman scattering (SERS) detection and singlet-oxygen generation: A potential nanoplatform for theranostics. Langmuir 27:12186–12190.
  • Fales AM, Yuan H, Vo-Dinh T. (2013). Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm 10:2291–2298.
  • Fang J, Nakamura H, Maeda H. (2011). The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151.
  • Fang W, Wang Z, Zong S, et al. (2014). pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 57:10–15.
  • Farhadi A, Roxin A, Wilson BC, Zheng G. (2015). Nano-enabled SERS reporting photosensitizers. Theranostics 5:469–476.
  • Ferrari AC, Basko DM. (2013). Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol 8:235–246.
  • Fornasaro S, Dalla Marta S, Rabusin M, et al. (2016). Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of methotrexate. Faraday Discuss 187:485–499.
  • Gao Y, Li Y, Chen J, et al. (2015). Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials 60:31–41.
  • Glasgow MDK, Chougule MB. (2015). Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol 11:1859–1898.
  • Hossain MK, Cho HY, Kim KJ, Choi JW. (2015). In situ monitoring of doxorubicin release from biohybrid nanoparticles modified with antibody and cell-penetrating peptides in breast cancer cells using surface-enhanced Raman spectroscopy. Biosens Bioelectron 71:300–305.
  • Hu F, Zhang Y, Chen G, et al. (2015). Double-walled Au nanocage/SiO2 nanorattles: Integrating SERS imaging, drug delivery and photothermal therapy. Small 11:985–993.
  • Huang J, Guo M, Ke H, et al. (2015a). Rational design and synthesis of gammaFe2 O3 @Au magnetic gold nanoflowers for efficient cancer theranostics. Adv Mater 27:5049–5056.
  • Huang X, Zhang T, Goswami A, et al. (2015b). Glutathione-triggered release of model drug molecules from mesoporous silica nanoparticles via a non-redox process. RSC Adv 5:28836–28839.
  • Huang YY, Sharma SK, Dai T, et al. (2012). Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev 1:111–146.
  • Ilkhani H, Hughes T, Li J, et al. (2016). Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264.
  • Iversen TG, Skotland T, Sandvig K. (2011). Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 6:176–185.
  • J Boohaker R, W Lee M, Vishnubhotla P, et al. (2012). The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804.
  • Jaworska A, Fornasaro S, Sergo V, Bonifacio A. (2016). Potential of surface enhanced raman spectroscopy (sers) in therapeutic drug monitoring (TDM). A critical review. Biosensors 6:47.
  • Jenkins SV, Nedosekin DA, Miller EK, et al. (2017). Galectin-1-based tumor-targeting for gold nanostructure mediated photothermal therapy. Int J Hyperthermia In press.
  • Jokerst JV, Cole AJ, Van De Sompel D, Gambhir SS. (2012). Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377.
  • Jung S, Nam J, Hwang S, et al. (2013). Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Anal Chem 85:7674–7681.
  • Kang B, Afifi MM, Austin LA, El-Sayed MA. (2013). Exploiting the nanoparticle plasmon effect: observing drug delivery dynamics in single cells via Raman/fluorescence imaging spectroscopy. ACS Nano 7:7420–7427.
  • Kang B, Austin LA, El-Sayed MA. (2014). Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes. ACS Nano 8:4883–4892.
  • Kepp O, Galluzzi L, Lipinski M, et al. (2011). Cell death assays for drug discovery. Nat Rev Drug Discov 10:221–237.
  • Khaing Oo MK, Yang Y, Hu Y, et al. (2012). Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6:1939–1947.
  • Kircher MF, De La Zerda A, Jokerst JV, et al. (2012). A brain tumor molecular imaging strategy using a new triple-modality mri-photoacoustic-raman nanoparticle. Nat Med 18:829–834.
  • Kneipp K, Wang Y, Kneipp H, et al. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667.
  • Li N, Li T, Liu C, et al. (2016). Folic acid-targeted and cell penetrating peptide-mediated theranostic nanoplatform for high-efficiency tri-modal imaging-guided synergistic anticancer phototherapy. J Biomed Nanotechnol 12:878–893.
  • Li S, Schmitz KR, Jeffrey PD, et al. (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7:301–311.
  • Li WT. (2013). Nanoparticles for photodynamic therapy (Chapter 23). In: Popp J, Tuchin V, Chiou A, Heinemann S, eds. Handbook of biophotonics. Handbook of biophotonics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 321–336.
  • Liang L, Huang D, Wang H, et al. (2015). In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Anal Chem 87:2504–2510.
  • Lin W, Huang YW, Zhou XD, Ma Y. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259.
  • Litti L, Amendola V, Toffoli G, Meneghetti M. (2016). Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Anal Bioanal Chem 408:2123–2131.
  • Liu X, Huang N, Huan L, et al. (2014). Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6:5657–5668.
  • Liu X, Tao H, Yang K, et al. (2011). Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32:144–151.
  • Liu Y, Chang Z, Yuan H, et al. (2013). Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics. Nanoscale 5:12126–12131.
  • Liu Y, Yuan H, Fales AM, et al. (2015a). Multifunctional gold nanostars for molecular imaging and cancer therapy. Front Chem 3. doi: https://doi.org/10.3389/fchem.2015.00051.
  • Liu Z, Ye B, Jin M, et al. (2015b). Dye-free near-infrared surface-enhanced Raman scattering nanoprobes for bioimaging and high-performance photothermal cancer therapy. Nanoscale 7:6754–6761.
  • Macdonald IJ, Dougherty TJ. (2001). Basic principles of photodynamic therapy. J Porphyr Phthalocyanines 5:105–129.
  • Maeda H, Nakamura H, Fang J. (2013). The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79.
  • Marches R, Mikoryak C, Wang RH, et al. (2011). The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology 22:095101.
  • Mcquillan AJ. (2009). The discovery of surface-enhanced Raman scattering. Notes Rec R Soc 63:105–109.
  • Meng L, Zhang X, Lu Q, et al. (2012). Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials 33:1689–1698.
  • Moan J, Berg K. (1991). The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 53:549–553.
  • Modugno G, Ménard‐Moyon C, Prato M, Bianco A. (2015). Carbon nanomaterials combined with metal nanoparticles for theranostic applications. Br J Pharmacol 172:975–991.
  • Nam J, Won N, Jin H, et al. (2009). pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639–13645.
  • Nawaz H, Bonnier F, Knief P, et al. (2010). Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma. Analyst 135:3070–3076.
  • Nergiz SZ, Gandra N, Tadepalli S, Singamaneni S. (2014). Multifunctional hybrid nanopatches of graphene oxide and gold nanostars for ultraefficient photothermal cancer therapy. ACS Appl Mater Interfaces 6:16395–16402.
  • Nima ZA, Biswas A, Bayer IS, et al. (2014). Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metab Rev 46:155–175.
  • Nima ZA, Mahmood MW, Karmakar A, et al. (2013). Single-walled carbon nanotubes as specific targeting and Raman spectroscopic agents for detection and discrimination of single human breast cancer cells. J Biomed Opt 18:055003–055003.
  • Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. (2011). Analysis of anticancer drugs: A review. Talanta 85:2265–2289.
  • Pan YJ, Chen YY, Wang DR, et al. (2012). Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials 33:6570–6579.
  • Pekkanen AM, Dewitt MR, Rylander MN. (2014). Nanoparticle enhanced optical imaging and phototherapy of cancer. J Biomed Nanotechnol 10:1677–1712.
  • Raghavan V, Connolly JM, Fan HM, et al. (2014). Gold nanosensitisers for multimodal optical diagnostic imaging and therapy of cancer. J Nanomed Nanotechnol 5:1.
  • Rath S, Sahu A, Gota V, et al. (2015). Raman spectroscopy for detection of imatinib in plasma: A proof of concept. J Innov Opt Health Sci 8:1550019.
  • Robertson CA, Evans DH, Abrahamse H. (2009). Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96:1–8.
  • Robinson JT, Welsher K, Tabakman SM, et al. (2010). High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res 3:779–793.
  • Seo SH, Kim BM, Joe A, et al. (2014). NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 35:3309–3318.
  • Shewach DS, Kuchta RD. (2009). Introduction to cancer chemotherapeutics. Chem Rev 109:2859–2861.
  • Simon T, Potara M, Gabudean AM, et al. (2015). Designing theranostic agents based on pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy. ACS Appl Mater Interfaces 7:16191–16201.
  • Smith E, Dent G. (2005). Modern Raman spectroscopy: A practical approach. Chichester, England: John Wiley & Sons.
  • Smyth EC, Verheij M, Allum W, et al. (2016). Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 27:v38–v49.
  • Society AC. (2015). Cancer facts and figures 2015. Atlanta: American Cancer Society.
  • Song J, Pu L, Zhou J, et al. (2013). Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7:9947–9960.
  • Song J, Wang F, Yang X, et al. (2016). Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications. J Am Chem Soc 138:7005–7015.
  • Steichen SD, Caldorera-Moore M, Peppas NA. (2013). A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427.
  • Sudhakar A. (2009). History of cancer, ancient and modern treatment methods. J Cancer Sci Ther 1:1.
  • Sutradhar KB, Amin ML. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol 2014:12.
  • Thakor AS, Gambhir SS. (2013). Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J Clin 63:395–418.
  • Tian L, Gandra N, Singamaneni S. (2013). Monitoring controlled release of payload from gold nanocages using surface enhanced raman scattering. ACS Nano 7:4252–4260.
  • Vicario A, Sergo V, Toffoli G, Bonifacio A. (2015). Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin. Colloids Surf B Biointerfaces 127:41–46.
  • Vogler A, Kunkely H, Rethwisch B. (1980). Tetrabenzporphyrin complexes of iron, palladium and platinum. Inorganica Chim Acta 46:101–105.
  • Voliani V, Signore G, Nifosí R, et al. (2012). Smart delivery and controlled drug release with gold nanoparticles: New frontiers in nanomedicine. Recent Pat Nanomed 2:34–44.
  • Wang X, Wang C, Cheng L, et al. (2012a). Noble metal coated single-walled carbon nanotubes for applications in surface enhanced Raman scattering imaging and photothermal therapy. J Am Chem Soc 134:7414–7422.
  • Wang Y, Chen L, Liu P. (2012b). Biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chemistry 18:5935–5943.
  • Wang Y, Newell BB, Irudayaraj J. (2012c). Folic acid protected silver nanocarriers for targeted drug delivery. J Biomed Nanotechnol 8:751–759.
  • Wang YW, Kang S, Khan A, et al. (2015). In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed Opt Express 6:3714–3723.
  • Wang YW, Khan A, Leigh SY, et al. (2014). Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. Biomed Opt Express 5:2883–2895.
  • Weissleder R. (2001). A clearer vision for in vivo imaging. Nat Biotechnol 19:316–317.
  • Wilson J, Connock M, Song F, et al. (2005). Imatinib for the treatment of patients with unresectable and/or metastatic gastrointestinal stromal tumours: Systematic review and economic evaluation. Health Technol Assess 9:1–142.
  • Wu P, Gao Y, Lu Y, et al. (2013). High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst 138:6501–6510.
  • Wu P, Gao Y, Zhang H, Cai C. (2012). Aptamer-guided silver–gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 84:7692–7699.
  • Wu X, Chen J, Wu M, Zhao JX. (2015). Aptamers: Active targeting ligands for cancer diagnosis and therapy. Theranostics 5:322–344.
  • Yang E, Diers JR, Huang YY, et al. (2013). Molecular electronic tuning of photosensitizers to enhance photodynamic therapy: Synthetic dicyanobacteriochlorins as a case study. Photochem Photobiol 89:605–618.
  • Yuan H, Fales AM, Khoury CG, et al. (2013). Spectral characterization and intracellular detection of surface-enhanced raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44:234–239.
  • Yuen C, Zheng W, Huang Z. (2010). Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens Bioelectron 26:580–584.
  • Zavaleta CL, Garai E, Liu JTC, et al. (2013). A Raman-based endoscopic strategy for multiplexed molecular imaging. Proc Natl Acad Sci USA 110:E2288–E2297.
  • Zhang W, Wang Y, Sun X, et al. (2014). Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 6:14514–14522.
  • Zhang Y, Aslan K, Previte MJ, Geddes CD. (2007). Metal-enhanced singlet oxygen generation: A consequence of plasmon enhanced triplet yields. J Fluoresc 17:345–349.
  • Zhang Y, Qian J, Wang D, et al. (2013). Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chemie Int Ed 52:1148–1151.
  • Zhao L, Kim TH, Kim HW, et al. (2015). Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Acta Biomater 20:155–164.
  • Zong S, Wang Z, Chen H, et al. (2013). Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery. Anal Chem 85:2223–2230.
  • Zong S, Wang Z, Chen H, et al. (2014). Telomerase triggered drug release using a SERS traceable nanocarrier. IEEE Trans Nanobiosci 13:55–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.