1,799
Views
59
CrossRef citations to date
0
Altmetric
Review Article

Effects of 5-Aza-2′-deoxycytidine (decitabine) on gene expression

ORCID Icon, , &
Pages 193-207 | Received 12 Dec 2017, Accepted 02 Feb 2018, Published online: 18 Feb 2018

References

  • Allis CD, Jenuwein T. 2016. The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500.
  • Almatrafi A, Feichtinger J, Vernon EG, Escobar NG, Wakeman JA, Larcombe LD, McFarlane RJ. 2014. Identification of a class of human cancer germline genes with transcriptional silencing refractory to the hypomethylating drug 5-aza-2’-deoxycytidine. Oncoscience. 1:745–750.
  • Al-Salihi M, Yu M, Burnett DM, Alexander A, Samlowski WE, Fitzpatrick FA. 2011. The depletion of DNA methyltransferase-1 and the epigenetic effects of 5-aza-2′deoxycytidine (decitabine) are differentially regulated by cell cycle progression. Epigenetics. 6:1021–1028.
  • Bird AP, Wolffe AP. 1999. Methylation-induced repression-belts, braces, and chromatin. Cell. 99:451–454.
  • Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, Farnham PJ. 2014. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 15:469.
  • Brenner C, Fuks F. 2006. DNA methyltransferases: facts, clues, mysteries. Curr Top Microbiol Immunol. 301:45–66.
  • Bryan J, Kantarjian H, Garcia-Manero G, Jabbour E. 2011. Pharmacokinetic evaluation of decitabine for the treatment of leukemia. Expert Opin Drug Metab Toxicol. 7:661–672.
  • Cai Y, Geutjes EJ, de Lint K, Roepman P, Bruurs L, Yu LR, Wang W, van Blijswijk J, Mohammad H, de Rink I, et al. 2014. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes. Oncogene. 33:2157–2168.
  • Cameron EE, Bachman KE, Myöhänen S, Herman JG, Baylin SB. 1999. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet. 21:103–107.
  • Chan MF, Liang G, Jones PA. 2000. Relationship between transcription and DNA methylation. Curr Top Microbiol Immunol. 249:75–86.
  • Chen Y, Damayanti NP, Irudayaraj J, Dunn K, Zhou FC. 2014. Diversity of two forms of DNA methylation in the brain. Front Genet. 5:46.
  • Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et al. 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 162:974–986.
  • Chiappinelli KB, Zahnow CA, Ahuja N, Baylin SB. 2016. Combining epigenetic and immunotherapy to combat cancer. Cancer Res. 76:1683–1689.
  • Chowdhury B, McGovern A, Cui Y, Choudhury SR, Cho IH, Cooper B, Chevassut T, Lossie AC, Irudayaraj J. 2015. The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymethylcytosine in human leukemia cells. Sci Rep. 5:9281.
  • Christman JK, Schneiderman N, Acs G. 1985. Formation of highly stable complexes between 5-azacytosine-substituted DNA and specific non-histone nuclear proteins. Implications for 5-azacytidine-mediated effects on DNA methylation and gene expression. J Biol Chem. 260:4059–4068.
  • Claus R, Almstedt M, Lübbert M. 2005. Epigenetic treatment of hematopoietic malignancies: in vivo targets of demethylating agents. Semin Oncol. 32:511–520.
  • Coral S, Covre A, Nicolay HJMG, Parisi G, Rizzo A, Colizzi F, Dalla Santa S, Fonsatti E, Fratta E, Sigalotti L, et al. 2012. Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: immunotherapeutic implications. Br J Cancer. 107:1116–1124.
  • Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O. 2011. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol. 31:3298–3311.
  • D’Costa ZJ, Jolly C, Androphy EJ, Mercer A, Matthews CM, Hibma MH. 2012. Transcriptional repression of E-cadherin by human papillomavirus type 16 E6. PLoS One. 7:e48954.
  • de Caceres II, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P. 2006. Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res. 66:5021–5028.
  • El Baroudi M, La Sala D, Cinti C, Capobianco E. 2014. Pathway landscapes and epigenetic regulation in breast cancer and melanoma cell lines. Theor Biol Med Model. 11(1):S8.
  • Evans IC, Barnes JL, Garner IM, Pearce DR, Maher TM, Shiwen X, Renzoni EA, Wells AU, Denton CP, Laurent GJ, et al. 2016. Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis. Clin Sci (Lond). 130:575–586.
  • Fabre C, Grosjean J, Tailler M, Boehrer S, Adès L, Perfettini JL, de Botton S, Fenaux P, Kroemer G. 2008. A novel effect of DNA methyltransferase and histone deacetylase inhibitors: NFkappaB inhibition in malignant myeloblasts. Cell Cycle. 7:2139–2145.
  • Fan H, Zhao ZJ, Cheng YC, Shan YF, Lu ZH, Zhang JQ, Xie W. 2007. Gene induction and apoptosis in human hepatocellular carcinoma cells SMMC-7721 exposed to 5-aza-2′-deoxycytidine. Chin Med J. 120:1626–1631.
  • Feinberg AP, Koldobskiy MA, Göndör A. 2016. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 17:284–299.
  • Fukagawa A, Ishii H, Miyazawa K, Saitoh M. 2015. δEF1 associates with DNMT1 and maintains DNA methylation of the E-cadherin promoter in breast cancer cells. Cancer Med. 4:125–135.
  • Fuks F. 2005. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 15:490–495.
  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 24:88–91.
  • Gonzalgo ML, Hayashida T, Bender CM, Pao MM, Tsai YC, Gonzales FA, Nguyen HD, Nguyen TT, Jones PA. 1998. The role of DNA methylation in expression of the p19/p16 locus in human bladder cancer cell lines. Cancer Res. 58:1245–1252.
  • Haaf T. 1995. The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes. Pharmacol Ther. 65:19–46.
  • Habbe N, Bert T, Simon B. 2007. Identification of methylation-associated gene expression in neuroendocrine pancreatic tumor cells. Pancreatology. 7:352–359.
  • Hagemann S, Heil O, Lyko F, Brueckner B. 2011. Azacytidine and Decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One. 6:e17388.
  • Hahn MA, Szabó PE, Pfeifer GP. 2014. 5-Hydroxymethylcytosine: a stable or transient DNA modification? Genomics. 104:314–323.
  • Hellebrekers DMEI, Castermans K, Vire E, Dings RPM, Hoebers NTH, Mayo KH, Oude Egbrink MGA, Molema G, Fuks F, van Engeland M, et al. 2006. Epigenetic regulation of tumor endothelial cell anergy: silencing of intercellular adhesion molecule-1 by histone modifications. Cancer Res. 66:10770–10777.
  • Hellebrekers DMEI, Melotte V, Vire E, Langenkamp E, Molema G, Fuks F, Herman JG, Van Criekinge W, Griffioen AW, van Engeland M. 2007. Identification of epigenetically silenced genes in tumor endothelial cells. Cancer Res. 67:4138–4148.
  • Heller G, Weinzierl M, Noll C, Babinsky V, Ziegler B, Altenberger C, Minichsdorfer C, Lang G, Dome B, End-Pfutzenreuter A, et al. 2012. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non–small cell lung cancers. Clin Cancer Res. 18:1619–1629.
  • Hernández-Muñoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M. 2005. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol. 25:11047–11058.
  • Hong X, Nelson K, Lemke N, Kalkanis SN. 2012. Heparanase expression is associated with histone modifications in glioblastoma. Int J Oncol. 40:494–500.
  • Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, et al. 2007. MicroRNA signatures in human ovarian cancer. Cancer Res. 67:8699–8707.
  • Issa JP, Kantarjian HM. 2009. Targeting DNA methylation. Clin Cancer Res. 15:3938–3946.
  • Jones PA. 1999. The DNA methylation paradox. Trends Genet. 15:34–37.
  • Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492.
  • Juan D, Perner J, Carrillo de Santa Pau E, Marsili S, Ochoa D, Chung HR, Vingron M, Rico D, Valencia A. 2016. Epigenomic co-localization and co-evolution reveal a key role for 5hmC as a communication hub in the chromatin network of ESCs. Cell Rep. 14:1246–1257.
  • Juttermann R, Li E, Jaenisch R. 1994. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA. 91:11797–11801.
  • Kafer GR, Li X, Horii T, Suetake I, Tajima S, Hatada I, Carlton PM. 2016. 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 14:1283–1292.
  • Karpf AR, Lasek AW, Ririe TO, Hanks AN, Grossman D, Jones DA. 2004. Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine. Mol Pharmacol. 65:18–27.
  • Kim JT, Li J, Song J, Lee EY, Weiss HL, Townsend CM Jr, Evers BM. 2015. Differential expression and tumorigenic function of neurotensin receptor 1 in neuroendocrine tumor cells. Oncotarget. 6:26960–26970.
  • Klebig C, Seitz S, Arnold W, Deutschmann N, Pacyna-Gengelbach M, Scherneck S, Petersen I. 2005. Characterization of {gamma}-aminobutyric acid type A receptor-associated protein, a novel tumor suppressor, showing reduced expression in breast cancer. Cancer Res. 65:394–400.
  • Klose RJ, Bird AP. 2006. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 31:89–97.
  • Komashko VM, Farnham PJ. 2010. 5-azacytidine treatment reorganizes genomic histone modification patterns. Epigenetics. 5:229–240.
  • Kondo Y, Shen L, Issa JP. 2003. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 23:206–215.
  • Koshy M, Dorn L, Bressler L, Molokie R, Lavelle D, Talischy N, Hoffman R, van Overveld W, DeSimone J. 2000. 2-deoxy 5-azacytidine and fetal hemoglobin induction in sickle cell anemia. Blood. 96:2379–2384.
  • Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ, Tainsky MA. 2003. Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene. 22: 4118–4127.
  • Kulis M, Queirós AC, Beekman R, Martín-Subero JI. 2013. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 1829:1161–1174.
  • Kusy S, Potiron V, Zeng C, Franklin W, Brambilla E, Minna J, Drabkin HA, Roche J. 2005. Promoter characterization of Semaphorin SEMA3F, a tumor suppressor gene. Biochim Biophys Acta. 1730:66–76.
  • Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. 2010. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 29:576–588.
  • Laska MJ, Nissen KK, Nexø BA. 2013. (Some) cellular mechanisms influencing the transcription of human endogenous retrovirus, HERV-Fc1. PLoS One. 8:e53895.
  • Lavelle D, DeSimone J, Hankewych M, Kousnetzova T, Chen YH. 2003. Decitabine induces cell cycle arrest at the G1 phase via p21WAF1 and the G2/M phase via the p38 MAP kinase pathway. Leuk Res. 27:999–1007.
  • Lee SH, Kim J, Kim WH, Lee YM. 2009. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene. 28:184–194.
  • Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA, Sen GC, Komarova EA, Gudkov AV. 2013. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci USA. 110:E89–E98.
  • Li H, Rauch T, Chen ZX, Szabó PE, Riggs AD, Pfeifer GP. 2006. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 281:19489–19500.
  • Liang G, Gonzales FA, Jones PA, Orntoft TF, Thykjaer T. 2002. Analysis of gene induction in human fibroblasts and bladder cancer cells exposed to the methylation inhibitor 5-aza-2′-deoxycytidine. Cancer Res. 62:961–966.
  • Luczak MW, Jagodzinski PP. 2006. The role of DNA methylation in cancer development. Folia Histochem Cytobiol. 44:143–154.
  • Martin C, Zhang Y. 2005. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6:838–849.
  • Maslov AY, Lee M, Gundry M, Gravina S, Strogonova N, Tazearslan C, Bendebury A, Suh Y, Vijg J. 2012. 5-aza-2′-deoxycytidine-induced genome rearrangements are mediated by DNMT1. Oncogene. 31:5172–5179.
  • Matei D, Fang F, Shen C, Schilder J, Arnold A, Zeng Y, Berry WA, Huang T, Nephew KP. 2012. Epigenetic resensitization to platinum in ovarian cancer. Cancer Res. 72:2197–2205.
  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D′Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 466:253–257.
  • Mielnicki LM, Ying AM, Head KL, Asch HL, Asch BB. 1999. Epigenetic regulation of gelsolin expression in human breast cancer cells. Exp Cell Res. 249:161–176.
  • Missiaglia E, Donadelli M, Palmieri M, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR. 2005. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2′-deoxycytidine treatment is associated with activation of the interferon signalling pathway. Oncogene. 24:199–211.
  • Momparler RL. 2005. Pharmacology of 5-Aza-2’-deoxycytidine (decitabine). Semin Hematol. 42:S9–S16.
  • Momparler RL. 2012. A perspective on the comparative antileukemic activity of 5-Aza-2′-deoxycytidine (Decitabine) and 5-Azacytidine (Vidaza). Pharmaceuticals (Basel). 5:875–881.
  • Moskalev EA, Luckert K, Vorobjev IA, Mastitsky SE, Gladkikh AA, Stephan A, Schrenk M, Kaplanov KD, Kalashnikova OB, Pötz O, et al. 2012. Concurrent epigenetic silencing of wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia. BMC Cancer. 12:213.
  • Mukhopadhyay P, Seelan RS, Rezzoug F, Warner DR, Smolenkova IA, Brock G, Pisano MM, Greene RM. 2017. Determinants of orofacial clefting I: effects of 5-Aza-2′-deoxycytidine on cellular processes and gene expression during development of the first branchial arch. Reprod Toxicol. 67:85–99.
  • Müller CI, Rüter B, Koeffler HP, Lübbert M. 2006. DNA hypermethylation of myeloid cells, a novel therapeutic target in MDS and AML. Curr Pharm Biotechnol. 7:315–321.
  • Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G, Jones PA. 2002. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res. 62:6456–6461.
  • Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257.
  • Orta ML, Höglund A, Calderón-Montaño JM, Domínguez I, Burgos-Morón E, Visnes T, Pastor N, Ström C, López-Lázaro M, Helleday T. 2014. The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Res. 42:9108–9120.
  • Palii SS, Van Emburgh BO, Sankpal UT, Brown KD, Robertson KD. 2008. DNA methylation inhibitor 5-Aza-2′-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol. 28:752–771.
  • Pampalakis G, Diamandis EP, Sotiropoulou G. 2006. The epigenetic basis for the aberrant expression of kallikreins in human cancers. Biol Chem. 387:795–799.
  • Papageorgiou DN, Karkoulia E, Amaral-Psarris A, Burda P, Kolodziej K, Demmers J, Bungert J, Stopka T, Strouboulis J. 2016. Distinct and overlapping DNMT1 interactions with multiple transcription factors in erythroid cells: evidence for co-repressor functions. Biochim Biophys Acta. 1859:1515–1526.
  • Pastor WA, Aravind L, Rao A. 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol. 14:341–356.
  • Patra SK, Bettuzzi S. 2009. Epigenetic DNA-(cytosine-5-carbon) modifications: 5-aza-2′-deoxycytidine and DNA-demethylation. Biochemistry (Mosc). 74:613–619.
  • Pham DNT, Leclerc D, Lévesque N, Deng L, Rozen R. 2013. β,β-Carotene 15,15’-monooxygenase and its substrate β-carotene modulate migration and invasion in colorectal carcinoma cells. Am J Clin Nutr. 98:413–422.
  • Pinheiro A, Nunes MJ, Milagre I, Rodrigues E, Silva MJ, de Almeida IT, Rivera I. 2012. Demethylation of the coding region triggers the activation of the human testis-specific PDHA2 gene in somatic tissues. PLoS One. 7:e38076.
  • Pleyer L, Greil R. 2015. Digging deep into “dirty” drugs - modulation of the methylation machinery. Drug Metab Rev. 47:252–279.
  • Poplineau M, Schnekenburger M, Dufer J, Kosciarz A, Brassart-Pasco S, Antonicelli F, Diederich M, Trussardi-Regnier A. 2015. The DNA hypomethylating agent, 5-aza-2′-deoxycytidine, enhances tumor cell invasion through a transcription-dependent modulation of MMP-1 expression in human fibrosarcoma cells. Mol Carcinog. 54:24–34.
  • Poplutz MK, Wessels I, Rink L, Uciechowski P. 2014. Regulation of the Interleukin-6 gene expression during monocytic differentiation of HL-60 cells by chromatin remodeling and methylation. Immunobiology. 219:619–626.
  • Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SHL, Watkins DN, Herman JG, Baylin SB. 2006. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2:e40.
  • Purcell M, Kruger A, Tainsky MA. 2014. Gene expression profiling of replicative and induced senescence. Cell Cycle. 13:3927–3937.
  • Qin T, Castoro R, El Ahdab S, Jelinek J, Wang X, Si J, Shu J, He R, Zhang N, Chung W, et al. 2011. Mechanisms of resistance to decitabine in the myelodysplastic syndrome. PLoS One. 6:e23372.
  • Qin T, Jelinek J, Si J, Shu J, Issa JP. 2009. Mechanisms of resistance to 5-aza-2′-deoxycytidine in human cancer cell lines. Blood. 113:659–667.
  • Qiu X, Hother C, Ralfkiaer UM, Sogaard A, Lu Q, Workman CT, Liang G, Jones PA, Gronbaek K. 2010. Equitoxic doses of 5-azacytidine and 5-aza-2’deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One. 5:e12994.
  • Rasmussen KD, Helin K. 2016. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 30:733–750.
  • Rawluszko-Wieczorek AA, Horst N, Horbacka K, Bandura AS, Świderska M, Krokowicz P, Jagodziński PP. 2015. Effect of DNA methylation profile on OATP3A1 and OATP4A1 transcript levels in colorectal cancer. Biomed Pharmacother. 74:233–242.
  • Reik W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 447:425–432.
  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. 2000. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 25:338–342.
  • Roulois D, Yau HL, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al. 2015. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 162:961–973.
  • Rountree MR, Bachman KE, Baylin SB. 2000. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 25:269–277.
  • Rubinstein JC, Tran N, Ma S, Halaban R, Krauthammer M. 2010. Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma. BMC Med Genomics. 3:4.
  • Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA. 2006. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 9:435–443.
  • Sajadian SO, Ehnert S, Vakilian H, Koutsouraki E, Damm G, Seehofer D, Thasler W, Dooley S, Baharvand H, Sipos B, et al. 2015. Induction of active demethylation and 5hmC formation by 5-azacytidine is TET2 dependent and suggests new treatment strategies against hepatocellular carcinoma. Clin Epigenetics. 7:98.
  • Sayar N, Karahan G, Konu O, Bozkurt B, Bozdogan O, Yulug IG. 2015. Transgelin gene is frequently downregulated by promoter DNA hypermethylation in breast cancer. Clin Epigenetics. 7:104.
  • Schmelz K, Sattler N, Wagner M, Lübbert M, Dörken B, Tamm I. 2005. Induction of gene expression by 5-Aza-2′-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia. 19:103–111.
  • Scott SA, Dong WF, Ichinohasama R, Hirsch C, Sheridan D, Sanche SE, Geyer CR, DeCoteau JF. 2006. 5-Aza-2′-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation. Leuk Res. 30:69–76.
  • Seelan RS, Mukhopadhyay P, Warner DR, Smolenkova IA, Pisano MM, Greene RM. 2017. Determinants of orofacial clefting II: effects of 5-Aza-2′-deoxycytidine on gene methylation during development of the first branchial arch. Reprod Toxicol. 67:100–110.
  • Shenker N, Flanagan JM. 2012. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer. 106:248–253.
  • Shenker NS, Flower KJ, Wilhelm-Benartzi CS, Dai W, Bell E, Gore E, El Bahrawy M, Weaver G, Brown R, Flanagan JM. 2015. Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues. BMC Cancer. 15:337.
  • Smallwood A, Esteve PO, Pradhan S, Carey M. 2007. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 21:1169–1178.
  • Soengas MS, Capodieci P, Polsky D, Mora J, Esteller M, Opitz-Araya X, McCombie R, Herman JG, Gerald WL, Lazebnik YA, et al. 2001. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature. 409:207–211.
  • Speidel D. 2015. The role of DNA damage responses in p53 biology. Arch Toxicol. 89:501–517.
  • Sproul D, Nestor C, Culley J, Dickson JH, Dixon JM, Harrison DJ, Meehan RR, Sims AH, Ramsahoye BH. 2011. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci Usa. 108:4364–4369.
  • Stark GR, Kerr IM, Williams BRG, Silverman RH, Schreiber RD. 1998. How cells respond to interferons. Annu Rev Biochem. 67:227–264.
  • Steiner M, Clark B, Tang JZ, Zhu T, Lobie PE. 2012. 14-3-3σ mediates G2–M arrest produced by 5-aza-2′-deoxycytidine and possesses a tumor suppressor role in endometrial carcinoma cells. Gynecol Oncol. 127:231–240.
  • Stroud H, Feng S, Kinney SM, Pradhan S, Jacobsen SE. 2011. 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells. Genome Biol. 12:R54.
  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB. 2002. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet. 31:141–149.
  • Tabolacci E, Mancano G, Lanni S, Palumbo F, Goracci M, Ferrè F, Helmer-Citterich M, Neri G. 2016. Genome-wide methylation analysis demonstrates that 5-aza-2-deoxycytidine treatment does not cause random DNA demethylation in fragile X syndrome cells. Epigenetics Chromatin. 9:12.
  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324:930–935.
  • Takebayashi S, Nakao M, Fujita N, Sado T, Tanaka M, Taguchi H, Okumura K. 2001. 5-Aza-2′-deoxycytidine induces histone hyperacetylation of mouse centromeric heterochromatin by a mechanism independent of DNA demethylation. Biochem Biophys Res Commun. 288:921–926.
  • Tang L, Roberts PC, Kraniak JM, Li Q, Tainsky MA. 2006. Stat1 expression is not sufficient to regulate the interferon signaling pathway in cellular immortalization. J Interferon Cytokine Res. 26:14–26.
  • Van Tongelen A, Loriot A, De Smet C. 2017. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett. 396:130–137.
  • Vigna E, Recchia AG, Madeo A, Gentile M, Bossio S, Mazzone C, Lucia E, Morabito L, Gigliotti V, De Stefano L, et al. 2011. Epigenetic regulation in myelodysplastic syndromes: implications for therapy. Expert Opin Investig Drugs. 20:465–493.
  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 439:871–874.
  • Wongtrakoongate P. 2015. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells. 7:137–148.
  • Worm J, Kirkin AF, Dzhandzhugazyan KN, Guldberg P. 2001. Methylation-dependent silencing of the reduced folate carrier gene in inherently methotrexate-resistant human breast cancer cells. J Biol Chem. 276: 39990–40000.
  • Wozniak RJ, Klimecki WT, Lau SS, Feinstein Y, Futscher BW. 2007. 5-Aza-2′-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene. 26:77–90.
  • Xu J, Bauer DE, Kerenyi MA, Vo TD, Hou S, Hsu YJ, Yao H, Trowbridge JJ, Mandel G, Orkin SH. 2013. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA. 110:6518–6523.
  • Xu J, Huo D, Chen Y, Nwachukwu C, Collins C, Rowell J, Slamon DJ, Olopade OI. 2010. CpG island methylation affects accessibility of the proximal BRCA1 promoter to transcription factors. Breast Cancer Res Treat. 120:593–601.
  • Yang AS, Yang BJ. 2016. The failure of epigenetic combination therapy for cancer and what it might be telling us about DNA methylation inhibitors. Epigenomics. 8:9–12.
  • Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. 2014. Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell. 26:577–590.
  • Yao T, Rao Q, Liu L, Zheng C, Xie Q, Liang J, Lin Z. 2013. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in cervical cancer. Virol J. 10:175.
  • Zhang T, Cooper S, Brockdorff N. 2015. The interplay of histone modifications - writers that read. EMBO Rep. 16:1467–1481.
  • Zhang X, Li HM, Liu Z, Zhou G, Zhang Q, Zhang T, Zhang J, Zhang C. 2013. Loss of heterozygosity and methylation of multiple tumor suppressor genes on chromosome 3 in hepatocellular carcinoma. J Gastroenterol. 48:132–143.
  • Zhang YW, Staal B, Dykema KJ, Furge KA, Vande Woude GF. 2012. Cancer-type regulation of MIG-6 expression by inhibitors of methylation and histone deacetylation. PLoS One. 7:e38955.
  • Zheng Z, Li L, Liu X, Wang D, Tu B, Wang L, Wang H, Zhu WG. 2012. 5-Aza-2′-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins. FASEB J. 26:449–459.
  • Zhou VW, Goren A, Bernstein BE. 2011. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 12:7–18.
  • Zhu WG, Dai Z, Ding H, Srinivasan K, Hall J, Duan W, Villalona-Calero MA, Plass C, Otterson GA. 2001. Increased expression of unmethylated CDKN2D by 5-aza-2′-deoxycytidine in human lung cancer cells. Oncogene. 20:7787–7796.
  • Zhu WG, Hileman T, Ke Y, Wang P, Lu S, Duan W, Dai Z, Tong T, Villalona-Calero MA, Plass C, et al. 2004. 5-Aza-2′-deoxycytidine activates the p53/p21Waf1/Cip1 pathway to inhibit cell proliferation. J Biol Chem. 279:15161–15166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.